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ABSTRACT

This article derives optimal fiscal rules within a stochastic model of Keynesian
type in the context of Poole (1970) analysis. By using optimal control theory and
applying the Hamilton-Jacoby-Bellman equation, we extend the original Poole
results concerning the output stabilization properties of monetary policy to the
case of fiscal policy. In particular, we look for the optimal setting of government
expenditure and lump-sum taxation in the case that the fiscal authority wishes to
keep the product close to a reference value and that the economy is assumed to
be affected by stochastic disturbances of real and/or monetary type. According
to the findings an optimal government expenditure rule is on average preferable
to a taxation rule whatever the source of disturbances.

Classification JEL : C6, E6.
Keywords : Fiscal Policy, Poole model, Hamilton-Jacoby-Bellman equation.

1. INTRODUCTION
In this paper we address a common question in economics, namely, how should
a Ramsey-type authority conduct output stabilization policy. In particular, we an-
alyze how the policy-maker can choose between public expenditure or lump-sum
taxation as its optimal policy instrument in a Poole-type model (Poole, 1970). In
his pioneering study of the choice of the optimal monetary instrument, Poole has
shown that the stochastic structure of the economy and the source of different
disturbances would affect the choice of the optimal policy instrument. In partic-
ular, he compares a money supply rule to an interest rate rule and uses output
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variability as the sole evaluation criterion. He finds out that an interest rate rule is
better than a money supply rule if shocks originate in money markets, whereas a
money supply rule gets better results in a context where output shocks operate.
The original analysis of Poole was conducted within a stochastic variant of the
standard textbook IS-LM model and has exerted a significant influence on both
the theoretical literature and the real-world monetary practice.

A natural question stemming from Poole basic insight is whether a similar
problem arises in fiscal policy. In this case it might be possible to evaluate the
effectiveness of fiscal policy in stabilizating output in a stochastic context.a

Interestingly, the extension of the original Poole contribution to fiscal policy
remained relatively unexplored. In fact, no existing analyses from that contri-
bution onwards explicitly take into account the relative effectiveness of fiscal
instruments in the original Poole context: subsequent developments somewhat
broadened the range of issues that could be studied with this model, rather by
enriching it with other elements (e.g, the supply side and the rational expecta-
tions), notably by incorporating the Poole insights within modern general equilib-
rium models.

But while Poole’s analysis has been generalized in several directions, e.g.
to include a variable price level, an output/output gap distinction, and interest
rate feedback rules, these extensions mainly involve changes to the aggregate-
supply and policy-rule specifications, so the advent of the optimizing IS-LM
equations do not get a critical difference to Poole’s results.

The major extension of the basic Poole model is by Canzoneri et al.(1983),
who augment the closed-economy Poole analysis with rational expectations and
imperfect information. They show that the results of the original Poole analy-
sis with respect to liquidity as well as output demand shocks are exactly repli-
cated. Recently, in a standard New-Keynesian model Collard and Dellas (2005)
examine the properties of alternative targeting procedures in an economy that
represents a general equilibrium rendition of Poole contribution. In their model,
they obtain the original Poole results concerning output stabilization properties
of money and interest rate when the degree of intertemporal substitution is ’suf-
ficiently’ low (see also Collard and Dellas 2000). Hoffmann and Kempa (2009)
extend the original Poole analysis to a general two country open-economy con-
text for a large economy and a small open economy. Their results for the large
economy resemble those of the original Poole analysis whereas in the small
economy scenario the results of the large economy continue to hold only for
domestic shocks.

The present paper instead takes an alternative line with respect the current
literature.

aIn fact, in the conclusion of his paper Poole (1970) states that: “While the instrument problem
has been analyzed as a monetary policy problem, it is worth pointing out that a similar problem
arises in fiscal policy”.
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In fact, our discussion of fiscal policy effectiveness is based on the original
IS-LM model where the intertemporal optimization and expectations do not play
any role in accounting for aggregate economic activity. In fact, we deal with
this issue in a context of the original Poole stochastic model as we extend the
original results concerning the output stabilization properties of monetary policy
to the case of fiscal policy. A central feature of our analysis is that optimal policy
is derived in a highly stylized environment. A key advantage of this stylized
approach is that it facilitates understanding the ways through which policy should
respond to stabilize output as a consequence of a particular shock in isolation.
Furthermore, the mathematical technique is enough general and flexible to take
into account the nature of the shock both of real and monetary type.

In fact, the mathematical tool we use is the Hamilton-Jacoby-Bellman equa-
tion applied to the minimization of an integral operator whose variable is de-
scribed by a controlled stochastic differential equation. This procedure is inde-
pendent from the nature of the shock.

Finally, while policy results are generally drawn with numerical simulations
we developed a mathematical technique for the effects to be computed analyt-
ically with an explicit solution that makes more transparent the mechanism at
work.

We find two main results. First, the source of economy disturbances affects
the effectiveness of fiscal policy. Second, an optimal expenditure rule is always
preferable to a taxation rule.

The remainder of the paper is organized as follows. Section 2 is devoted
to a brief description of the model setup and discusses how real and monetary
uncertainty works. Section 3 describes how fiscal authority solves the optimal
problem of fiscal policy and explores which instrument, public expenditure or
lump-sum taxation, is the optimal one in that context. Section 4 concludes.

2. THE SETUP
Following Poole (1970), the problem of a benevolent Ramsey-type authority is
to keep the current output near an established reference value denoted by Yf .
Moreover, it is assumed to have always access to the available policy instru-
ments, that is lump-sum taxation and government expenditure.

The authority is increasingly worse-off the larger the deviations are from the
reference value. Namely, the fact of having a fiscal authority that increasingly
dislikes lower or larger output with respect to the reference value is taken into
account by assuming a quadratic expected loss function J of the type:

J = E[(YT − Yf )
2], (1)

where [0, T ] is the time span over which we work, YT is the stochastic level
of output at time T , Yf is the deterministic reference value and E denotes the
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expectation with respect to the probability law of Y .
The economy, that constitutes the constraint for the authority, is represented

by the traditional IS-LM model properly augmented to include stochastic shocks
of fiscal policy.

Thus, the authority wishes to minimize this function (1) subject to the con-
straint imposed by a stochastic fixed-price IS-LM model in differential formb:

dYt = dCt + dIt + dGt, (2)

dCt = cdY D
t , (3)

dY D
t = dYt − dTt, (4)

dIt = γdY D
t − hdrt + λ1utdBt, (5)

dMt − dPt = l1dY
D
t − l2drt + λ2utdBt, (6)

where the symbols are the usual ones and the equations are self-explanatory: in
the order, they are the resource constraint of the economy (the ex-ante equality
between investment and saving), consumption equation Ct and the investment
equation It that are function of national disposable income Y D

t (and the inter-
est rate rt for the investment), the demand for money equation (as a function
of national disposable income and the interest rate as well), Gt represents the
government expenditure; Tt is the lump-sum taxation; 0 < c < 1 and γ > 0,
represent the speed of adjustment in the goods market; h > 0, l1 > 0, l2 > 0
the speed of adjustment in the money market. In the following, we also assume
that money supply and prices do not change (dMt = 0 and dPt = 0). Moreover,
ut represents the derivatives of the available instrument (public expenditure or
taxation) with respect to time.

Furthermore, dBt is a Brownian motion and actually the source of the system
uncertainty.

It is worth remembering that a diffusion process is a continuous version of
the random walk, which is a solution of a stochastic differential equation. It is a
continuous-time Markov process with continuous sample paths.

In the case that the uncertainty is not present, the coefficient of dBt in (5) and
in (6) is null. In this case the model collapses to dY ∗

t = µiu
(i)
t where the control

variable u
(i)
t represents the variation rate of the control variable and accordingly,

bWe get the model in differential form to take properly into account the uncertainty. In fact, in
the case of the textbook formalization of IS-LM model, the fiscal uncertainty actually would not
operate and, as consequence, the fiscal instruments would be basically equivalent in stabilizing
output.
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µi is Keynesian multiplier associated to the fiscal instrument. The index i runs
over G,T and in particular it is set to G if the instrument is the public expenditure,
whereas it is T if the instrument is the taxation policy.

The keynesian multiplier will be

µG =
1

1− c− γ + hl1/l2
(7)

if the control variable is the public expenditure, or

µT =
−c− γ + hl1/l2
1− c− γ + hl1/l2

(8)

when the control variable is taxation (see the appendix for details).
According to the stability conditions of the system, taxation multiplier must

be negative, so that the following relationship must hold jointly:

−c− γ +
hl1
l2

< 0 (9)

and

1− c− γ +
hl1
l2

> 0 . (10)

Both these two conditions boil down to the following relationship:

0 < c+ γ − hl1
l2

< 1. (11)

In the following analysis, we will discuss the consequences of allowing for
uncertainty, alternatively, from real or monetary market involving different effects
in term of fiscal instrument effectiveness.

The first case corresponds essentially to the IS curve shifts due to stochastic
disturbance if the real interest rate was not to change. The second case is when
monetary disturbances make it impossible to fix the shape of the LM curve in
order to stabilize the system.

Then, we extend our analysis to the case of disturbances of both real and
monetary side.

In order to illustrate this point according to the source of stochastic distur-
bances, it is necessary to adopt a flexible and general approach which may be
able to easily describe both cases. The description in this section is based on
a general representation of the cases at work. In fact, the model here is flexible
enough to allow for a joint representation of a IS-LM with stochastic disturbances
in both real and monetary markets.

In fact, through simple calculus, it is possible to determine the reduced form
of the model described above in the case that equation (5) is stochastic and
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equation (6) is deterministic (λ2 = 0, the case that uncertainty stems from real
market only: see appendix A for more details)c:

dYt = µi u
(i)
t dt+ σ u

(i)
t dBt,

Y0 = y,
(12)

where µi is the Keynesian multiplier associated to the policy instrument consid-
ered (taxation T or public expenditure G), ut represents the derivatives of the
instrument with respect to time and σ (with σ ∈ R) denotes the diffusion coef-
ficient that can assume different functional forms according to the nature of the
disturbance (real disturbance, monetary disturbance or both). In this case of real
disturbances we have

σ =
λ1

1− c− γ + hl1/l2
. (13)

In the sequel, in order to simplify the mathematical notation, we set: u(i)t ≡ ut
as the two indices vary according to the instrument used in the analysis.

Then, it is possible to determine the reduced form of the model described
above in the case that equation (6) is stochastic and equation (5) is determin-
istic (λ1 = 0: the case that uncertainty stems from monetary market only: see
appendix A for more details):

dYt = µi ut dt+ χut dBt,
Y0 = y.

(14)

In this case with monetary shock, the diffusion coefficient is

χ =
−hλ2/l2

1− c− γ + hl1/l2
. (15)

When real and monetary disturbances are simultaneous (i.e. λ1 6= 0 and
λ2 6= 0 ), the equation describing the economy becomes (see appendix A for
more details):

{

dYt = µi ut dt+ (σ + χ) ut dBt,
Y0 = y.

(16)

Now, we shortly illustrate some mathematical details underlying equation
(16). These points ought be useful to better clarify the mathematical notation
in the text but also to allow for the instruments we are going to use to solve the
optimal control problem.

cThis formulation is a special case of the more general controlled Itô diffusion of the type:

dYt = µ(Yt, ut) dt+ σ(Yt, ut) dBt, with Y0 = y ,

where µ(Yt, ut) = µut and σ(Yt, ut) = σut.
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Since for every t we shall have a random control variable upon which the
random variable Yt depends, we consider a probability space with filtration

(Ω,F , {Ft}t≥0,P) ,

where the filtration Ft is the one generated by the standard 1-dimensional Brow-
nian motion B and is augmented by P-null sets, that is:

Ft = σ
(

Bs, 0 ≤ s ≤ t
)

∪
{

A ∈ F |P(A) = 0
}

, ∀ t ≥ 0. (17)

Moreover, we suppose that Y0 is an integrable random variable with law π0
and measurable with respect to F0 representing the initial value of the current in-
come: for sake of simplicity, we assume that at the time 0 income is deterministic
so that: Y0 = y, constant with y > 0.

The control variable ut = u(t, ω) is taken in a given family A of admissible
controls:

A :=
{

ut = u0(t, Yt(ω)) for some

Borel-measurable functions u0 : [0, T ]× R −→ R
}

.
(18)

For more technical details about (17) and (18) see Appendix C.
The value at time t of this functions only depends on the state of the system

at this time. These are called Markov controls because with such a u the corre-
sponding process Yt becomes an Itô diffusion, in particular a Markov process.

We are now able to minimize the operator J given in (1) under the constraint
(12) or, alternatevely, (14) or (16) involved by the economy. To this aim, we use
the Hamilton-Jacobi-Bellman (HJB) equation (see theorem 2 in the appendix B).

As usual in the dynamic programming literature we now let the controlled
diffusion Y start at time s from level y > 0; that is, we write







dY s,y
t = µi ut−s dt+ σ̃ ut−s dBt−s , with s ≤ t ≤ T

sub Y s,y
s = y .

(19)

and the optimization problem now reads

φ(s, y) = inf
u∈A

E
[

(Y s,y
T − Yf )

2
]

. (20)

To apply the HJB method, we have preliminarly to transform the mean value
J , given in the (1), into the mean value of an integral by Dynkin’s formula (see
theorem 1 of the appendix B).

As a consequence of Dynkin’s formula the mean value J , given in (1), reads:

J(s, y;u) = (y − Yf )
2 +E

[
∫ T

s
[2µi ut−s (Y

s,y
t − Yf ) + σ2u2t−s] dt

]

(21)
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and by virtue of the invariance of the problem under time translation (that is,
since the problem is time homogeneous), we can rewrite J in the form

J(s, y;u) = (y − Yf )
2 +E

[
∫ T−s

0
[2µi ut (Yt − Yf ) + σ2u2t ] dt

]

, (22)

and the optimization problem can be written in the form:















φ(s, y) := (y − Yf )
2 + inf

u∈A
E

[
∫ T−s

0
[2µi ut (Yt − Yf ) + σ2u2t ] dt

]

sub dYt = µi ut dt+ σ̃ ut dBt, with Y0 = y .

(23)

where σ̃ denotes a suitable value of σ, i.e. χ or σ+χ and we have simply denoted
by Yt the process (Y 0,y

t )t≤T .

3. SOLVING THE OPTIMAL CONTROL PROBLEM FOR THE AUTHORITY
If we apply the HJB equation to the second term on the left hand side of the
optimization problem in (23) we obtain (for more detalails see appendix B):

inf
u∈A

{

[

2µiu (y − Yf ) + σ̃2u2
]

+

[

∂φ

∂s
+ µiu

∂φ

∂y
+

(

σ̃2u2

2

)

∂2φ

∂y2

] }

= 0 . (24)

To find an optimal control, we now derive equation (24) with respect to u and
obtain

u = ū =

−2µi(y − Yf )− µi
∂φ

∂y

2σ̃2 + σ̃2
∂2φ

∂y2

. (25)

Substituting (25) into (24) we then obtain the value function:

2µiū (y − Yf ) + σ̃2ū2 +
∂φ

∂s
+ µiū

∂φ

∂y
+

(

σ̃2ū2

2

)

∂2φ

∂y2
= 0. (26)

Let us try to find a solution φ(s, y) of (25) and (26) of the form

φ(s, y) = (y − Yf )
2 g(s), (27)

with g(T ) = 1.
By substitution of (27) into (25), we obtain:

ū(s, y) =
−µi (y − Yf )

σ̃2
, (28)
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that is the optimal Markov control

u(s, ω) = ū(s, Ys(ω)) =
−µi (Ys − Yf )

σ̃2
, (29)

which, as we can easily observe, belongs to the set A given in the (18).
Substituting (27) into (26), we obtain:

g′(s)− µ2
i

σ2
g(s) =

µ2
i

σ̃2
, (30)

with g(T ) = 1, that is

g(s) = 2 exp

[

µ2
i

σ̃2
(s − T )

]

− 1. (31)

By substitution of (31) into (27) and then into (23), we finally obtain the value
function

φ(s, y) = 2 (y − Yf )
2 exp

[

µ2
i

σ̃2
(s− T )

]

. (32)

If we substitute the solution u given in (29) into the dynamic (16), we obtain
the linear geometric stochastic differential equation:

dỸt = − µ2

σ̃2
Ỹt −

µ

σ̃
Ỹt dBt , (33)

where we have set Ỹt = |Yt − Yf |. By Îto’s formula the solution of equation (33)
is

Ỹt = Ỹ0 e
−µ2t/(2σ̃2)e−µBt/σ̃ (34)

where Ỹ0 > 0 and the mean value of the random variable Ỹt is

E[Yt − Yf ] = Ỹ0 e
−µ2t/(2σ̃2)

E

[

e−µBt/σ̃
]

=

= Ỹ0 e
−µ2t/(2σ̃2) 1√

2πt

∫ ∞

−∞

e−x2/(2t)−µx/σ̃dx = Ỹ0 ,
(35)

because the probability law of Ỹt is the one of the Brownian motion Bt whose
density function is

f(x) =
1√
2πt

e−x2/(2t) . (36)

If we rewrite (34) in the form

log Ỹt = log Ỹ0 −
µ2t

2σ2
− µBt

σ
, (37)
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where the last term only is stochastic and the first two are deterministic, we can
obtain the mean value

E[log Ỹt] = log Ỹ0 −
µ2t

2σ2
. (38)

In order to compare terms we can take into account that the function loga-
rithm is increasing and then does not change the inequality relation between its
arguments.

According to the instrument we can substitute for the IS-LM parameters in
place of µ and σ̃. We can thus rewrite the optimal problem solution as

E

[

log Ỹt

]

= log Ỹ0 −
t

2λ2
1

, (39)

if the policy instrument is public expenditure and:

E

[

log Ỹt

]

= log Ỹ0 −
t (−c− γ + hl1/l2)

2

2λ2
1

, (40)

if the policy instrument is taxation.
By following the same procedure we have the solution in the case that un-

certainty is associated to the money market (i.e., λ1 = 0):

E

[

log Ỹt

]

= log Ỹ0 −
µ2
i t

2χ2
. (41)

Accordingly, if public expenditure is the policy variable equation (41) be-
comes (see notation reported in appendix A for more details):

E

[

log Ỹt

]

= log Ỹ0 −
t

2 (hλ2/l2)
2 , (42)

while if policy instrument is taxation (41) becomes:

E

[

log Ỹt

]

= log Ỹ0 −
t (−c− γ + hl1/l2)

2

2 (hλ2/l2)
2 . (43)

When shocks are simultaneous, the solution is:

E

[

log Ỹt

]

= log Ỹ0 −
µ2
i t

2 (χ+ σ̃)2
, (44)

that after substitution becomes:

E

[

log Ỹt

]

= log Ỹ0 −
t

2 (λ1 − hλ2/l2)
2 , (45)
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when policy instrument is public expenditure, and:

E

[

log Ỹt

]

= log Ỹ0 −
t (−c− γ + hl1/l2)

2

2 (λ1 − hλ2/l2)
2 , (46)

if the policy-maker opts for taxation.
Equations (38), (41) and (44) are the key findings of the paper. They de-

scribe the optimal path of income gap generated by the policy instrument adopted
and affected by the stochastic disturbance.

We can now answer the question whether it is public expenditure or lump-
sum taxation the most effective instrument to stabilize output if stochastic shocks
operate. The result can be summarized by the following proposition:

Proposition 1: Public expenditure is on average more effective in stabilizing
output than lump-sum taxation. Interestingly, this holds whatever the nature of
the shock (if it is of real or monetary type or both).

Proof: The proof is based on the following lines. First we draw a comparison be-
tween the two policy instruments to address which of them is better than other in
the case the uncertainty comes alternatevely, from real or monetary side. Then
we analyse which instrument fares better in the case that both types of distur-
bances are at work.

By comparing the different specifications of income gap in (39) and (40) (the
disturbance is only on the real side) we obtain that public expenditure is more
effective than taxation if:

− t

2λ2
1

< − (−c− γ + hl1/l2)
2 t

2λ2
1

. (47)

By the same criterion, comparison between (42) and (43) (the shock stems
from monetary market only) shows that public expentiture is more effective than
taxation if:

− t

2 (hλ2/l2)
2 < − (−c− γ + hl1/l2)

2 t

2 (hλ2/l2)
2 . (48)

Finally, by comparing (45) and (46) (disturbances are both of real and mon-
etary type), public expenditure is more effective than taxation if:

− t

2 (λ1 − hλ2/l2)
2 < − (−c− γ + hl1/l2)

2 t

2 (λ1 − hλ2/l2)
2 . (49)

Conditions (47), (48) and (49) are basically equivalent and boil down to the
following inequality:

−1 < c+ γ − hl1
l2

< 1 . (50)
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To sum up, if (50) holds then public expenditure is preferable to taxation.
Interestingly, this condition always must hold as we assume the model stability
condition (11).

Thus, condition (50) involves that under the usual assumptions (see equation
(11)) public expenditure is on average the most effective instrument to stabilize
the product near the reference value. �

4. Conclusions
This paper addresses the optimal stabilization policy in the Poole original con-
text. We find that the effectiveness of fiscal policy is affected by the nature of
economy disturbances whatever the instrument used. Furthermore, an optimal
government expenditure rule is preferable to a taxation rule under the usual sta-
bility conditions. Plainly, this model is too simple to be taken seriously as the
basis policy evaluation. Nonetheless, the simple analysis here may be both of
pedagogical value and useful to pin down the determinants of the product in the
well-known (stochastic) IS-LM context. The paper could also be taken as an
example of integration between stochastic process optimal control methods and
continuous time stochastic models. We developed a methodology which gener-
ates stochastic processes as closed form solutions. Accordingly, it is possible to
establish some relationships between the structural parameters of the economy
and the optimal fiscal rules. A promising development of this model might be
the introduction of distortionary taxation, coupled with the extension to a more
complicated environment with lagged responses to the disturbances and policy
actions.

5. Appendix A
In this Appendix we basically develop the same model in the text by explicitly
unveiling how the model parameters enter into the reduced form, according to
the instrument and the source of uncertainty.

A more compact representation of it is not allowed in this case as a conse-
quence of the flexible approach in use.

5.1 Real and Monetary Uncertainty: The case of public expenditure

dYt = dCt + dIt + dGt, (51)

dCt = c dY D
t , (52)

dY D
t = dYt − dTt, (53)

12



dIt = γY D
t − hdrt + λ1 ut dBt, (54)

l1Y
D
t − l2 drt + λ2 ut dBt = 0, (55)

where dBt is a Brownian motion and, in this case, the source of the system
uncertainty and ut is the variation of the control variable.

Let us solve equation (55) in drt:

drt =
λ2

l2
ut dBt +

l1
l2

Y D
t . (56)

Then, by substituting it in the equation (54) and assuming that the control
variable is the public expenditure ut = dGt/dt we have:

dIt =
dGt

dt
dBt

(

λ1 −
hλ2

l2

)

+ Y D
t

(

γ − hl1
l2

)

. (57)

Now we substitute the equations (57), (52) and (53) in (51):

dYt = cdY D
t +

dGt

dt
dBt

(

λ1 −
hλ2

l2

)

+ dY D
t

(

γ − hl1
l2

)

+ dGt, (58)

and, given that dTt = 0 we have:

dYt

(

1− c− γ +
hl1
l2

)

= ut dBt +

(

λ1 −
hλ2

l2

)

+ dGt , (59)

that can be written down in a more compact form:

dYt =
1

1− c− γ + hl1/l2
dGt +

1

1− c− γ + hl1/l2

(

λ1 −
hλ2

l2

)

dGt

dt
dBt . (60)

Equation (60) is a particular form of equation (16) with:

µi = µG =
1

1− c− γ + hl1/l2
,

σ + χ =
λ1 − hλ2/l2

1− c− γ + hl1/l2
and ut =

dGt

dt
.

(61)

5.2 Real and Monetary Uncertainty: The case of lump-sum taxation
Now we assume dGt = 0 and ut = dTt

dt . Repeatig the same procedure we
obtain:

dYt =
−c− γ + hl1/l2
1− c− γ + hl1/l2

dTt +
λ1 − hλ2/l2

1− c− γ + hl1/l2

dTt

dt
dBt . (62)

13



Equation (62) is a particular form of equation (12) with:

µi = µT =
−c− γ + hl1/l2
1− c− γ + hl1/l2

,

σ + χ =
λ1 − hλ2/l2

1− c− γ + hl1/l2
and ut =

dTt

dt
.

(63)

5.3 Real Uncertainty: The case of public expenditure
Let us assume ut = dGt/dt and that uncertainty is on the real side, λ2 = 0.

Equation (60) becomes:

dYt =
1

1− c− γ + hl1/l2
dGt +

λ1

1− c− γ + hl1/l2

dGt

dt
dBt. (64)

Equation (64) is a particular form of equation (12) with:

µi = µG =
1

1− c− γ + hl1/l2
,

σ =
λ1

1− c− γ + hl1/l2
and ut =

dGt

dt
.

(65)

5.4 Real Uncertainty: The case of lump-sum taxation
Let us assume ut = dTt/dt, and that uncertainty is on the real side, λ2 = 0.

Equation (62) becomes:

dYt =
−c− γ + hl1/l2
1− c− γ + hl1/l2

dTt +
λ1

1− c− γ + hl1/l2

dTt

dt
dBt . (66)

Equation (66) is a particular form of equation (12) with

µi = µT =
−c− γ + hl1/l2
1− c− γ + hl1/l2

,

σ =
λ1

1− c− γ + hl1/l2
and ut =

dTt

dt
.

(67)

5.5 Monetary Uncertainty: The case of public expenditure
Let us assume ut = dGt/dt and that uncertainty is on the monetary side,

λ1 = 0. Equation (60) becomes:

dYt =
1

1− c− γ + hl1l2
dGt +

−hλ2/l2
1− c− γ + hl1/l2

dGt

dt
dBt . (68)
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Equation (68) is a particular form of equation (14) with

µi = µG =
1

1− c− γ + hl1/l2
,

χ =
−hλ2/l2

1− c− γ + hl1/l2
and ut =

dGt

dt
.

(69)

5.6 Monetary Uncertainty: The case of lump-sum taxation
Let us assume ut = dTt/dt and that uncertainty is on the monetary side,

λ1 = 0. Equation (62) becomes:

dYt =
−c− γ + hl1/l2
1− c− γ + hl1/l2

dTt +
−hλ2/l2

1− c− γ + hl1/l2

dTt

dt
dBt . (70)

Equation (70) is a particular form of equation (14) with

µi = µT =
−c− γ + hl1/l2
1− c− γ + hl1/l2

,

χ =
−hλ2/l2

1− c− γ + hl1/l2
and ut =

dTt

dt
.

(71)

Appendix B
Remark 2. There exists a unique solution for the controlled equation (12) and
we refer the reader, for example, to Øksendal (2003) for the proof.

For Ȳ < Yf let us define the exit time τ of the dynamics as

τ := inf{t > 0 | Yt > Ȳ }.

Remark 3. By virtue of well known results, the measurability of τ with respect to
the σ-algebra Ft follows. Indeed, we have that τ is a stopping time.

Theorem 4 (Dynkin’s formula). Let Yt be the Itô diffusion

dYt = µ(Yt) dt+ σ(Yt) dBt, Y0 = y,

and f ∈ C2
0 (R). If τ is a stopping time with E[τ ] < +∞, then it yealds

E[f(Yτ )] = f(y) +E

[
∫ τ

0
Lf(Ys) ds

]

, (72)

where

Lf(z) := µ(z)
df

dz
+

1

2
[σ(z)]2

d2f

dz2
. (73)
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Theorem 5 (HJB equation). Suppose that we have

V (s, y) := sup
ut∈A

E

[
∫ τ

s
f(Yt, ut) dt

]

, (74)

with
{

dYt = µ(Yt, ut) dt+ σ(Yt, ut) dBt,
Y0 = y .

Suppose that V ∈ C2(R+) satisfies

E

[

|V (Yα)|+
∫ α

0
|LvV (Yt)| dt

]

< +∞,

for all bounded stopping times α < τ , for all y ∈ R and all v ∈ A, where

(LzV )(s, y) :=
∂V (s, y)

∂s
+ µ(y, v)

∂V

∂y
+

σ2(y, v)

2

∂2V

∂y2
.

Moreover, suppose that an optimal control u∗ exists, then we have

sup
v∈A

{f(y, v) + (LvV )(y)} = 0, (75)

and the supremum is obtained if it yialds v = u∗t = u∗(t), that is

f(y, u∗(t)) + (Lu∗(t)V )(y) = 0 .

The theorem 5 also applies to the corresponding minimum problem

φ(s, y) := inf
ut∈A

E

[
∫ τ

s
f(Yt, ut) dt

]

.

We have in fact

φ(s, y) = − sup
ut∈A

E

[
∫ τ

s
− f(Yt, ut) dt

]

,

from which, by replacing V with −φ and f with −f , it follows that the (75) in the
theorem 2 becomes

inf
v∈A

{f(y, v) + (Lzφ)(y)} = 0. (76)

For the details of the proof of these two theorems we remind the reader to
Øksendal (2003).

Appendix C
Definition 1. Given a set Ω, a σ − algebra F on Ω is a family F of subsets of Ω
which fullfills the following properties:
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(i) the empty set ∅ belongs to F ;

(ii) if F ∈ F , then the complement F̄ of F in Ω belongs to F , too;

(iii) if A1, A2, A3, · · · ∈ F , then A :=

∞
⋃

i=1

Ai ∈ F . �

Definition 2. The pair (Ω,F) is called a measurable space. �

Definition 3. A probability measure P on a measurable space (Ω,F) is a func-
tion P : F −→ [0, 1] such that

(i) P(∅) = 0 and P(Ω) = 1;

(ii) if A1, A2, A3, · · · ∈ F and Ai∩Aj = ∅, ∀i 6= j, then P

(

∞
⋃

i=1
Ai

)

=

∞
∑

i=1

P(Ai).

�

Definition 4. The triple (Ω,F ,P) is called a probability space. It is called a com-
plete probability space if F contains all subsets S of Ω with P − outer measure
zero, where the P− outer measure, denoted by P

∗, is defined as

P
∗(G) = inf

{

P(F ) : F ∈ F and G ⊂ F
}

. �

Definition 5. For a given family G of subsets of Ω, the σ − algebra denoted by
the symbol F

G
and defined as

F
G
=

⋂

{

F : F is a σ − algebra of Ω and G ⊂ F
}

is called the σ − algebra generated by G. �

Definition 6. If Ω is a topological space (e.g. Ω = R
n) equipped with the topol-

ogy G of all open subsets of Ω, then the σ − algebra B = F
G

is called the Borel
σ − algebra on Ω and the elements B ∈ B are called Borel sets. �

Definition 7. Given the measurable space (Ω,F), the (increasing) family {Mt}t≥0

of σ − algebras of Ω such that

Mt1 ⊂ Mt2 ⊂ F , ∀ 0 ≤ t1 < t2 ,

is called a filtration on (Ω,F). �
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