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Introduction



Introduction

• In this work we develop a linear expectile hidden Markov
model (EHMM) for the analysis of cryptocurrency time series
with a risk management perspective.

• To the best of our knowledge, a HMM for estimating
conditional expectiles has not yet been proposed in the
literature.

• The methodology allows to focus on the tails of returns
distribution and describe their temporal evolution by
introducing the model time-dependent coefficients evolving
according to a latent discrete homogeneous Markov chain.
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Introduction (cont.)

• Estimation of the model parameters is based on the
asymmetric normal distribution.

• Maximum likelihood estimates are obtained via an
Expectation-Maximization algorithm using efficient M-step
update formulas for all parameters.

• We evaluate the introduced method with both artificial data
and real data investigating the relationship between daily
Bitcoin returns and major world market indices.
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Financial Applications

• HMMs have become very popular in the financial time series
literature since the seminal works of Hamilton (1989).

• Univariate applications of HMMs to asset allocation, stock
returns, and financial data are discussed, for example, in
Langrock et al. (2012); Cavaliere et al. (2014); Nystrup et al.
(2017); Maruotti et al. (2019).

• Multivariate extensions have been proposed in Bernardi et al.
(2017).
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Goals

• Capture stylized facts of financial time series, as for example
serial correlation and heterogeneity, by letting the parameter
selection process be driven by an unobserved (i.e. hidden)
Markov chain.

• Build dynamic models in a risk management framework, which
may be of greater importance for investors and policymakers,
especially after the financial crisis of the last 15 years.
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Hidden Markov Model (HMM)

• A HMM is a particular kind of dependent mixture model
consisting of two parts: an underlying unobserved process and
a state-dependent process (Zucchini et al., 2016)

• Let {St}T
t=1 be a first-order Markov chain defined on the

discrete state space {1, ...,K}.
• The process {St}, which represents the underlying unobserved

process of the HMM, fulfills the Markov property

P(St = st|St−1 = st−1, ..., S1 = s1) = P(St = st|St−1 = st−1)

(1)
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Hidden Markov Model (HMM)

• Let {Xt}T
t=1 denote a sequence of observations

• The process {Xt} represents the state-dependent process of
the HMM and fulfills the conditional (on the hidden states)
independence property

P(Xt = xt|X1 = x1, ...,Xt−1 = xt−1, S1 = s1, ..., St = st)

= P(Xt = xt|St = st)
(2)

• Then, the pair of stochastic processes {(St,Xt)} is called a
K-state Hidden Markov Model.
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Expectile Hidden Markov Model

• Proposed by Newey and Powell (1987), expectile regression is
a ”quantile-like” generalization of standard mean regression
based on asymmetric least-squares estimation.

• Is an alternative to quantile regression approach for
characterizing the entire conditional distribution of a response
variable.

• Formally, the expectile of order τ ∈ (0, 1) of a continuous
response Y given the P-dimensional vector of covariates
X = x, is defined as

µx(τ) = argmin
µ∈R

E[ωτ (Y − µx(τ))] (3)
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Expectile Hidden Markov Model (cont.)

• ωτ (u) = u2|τ − I(u < 0)| is the asymmetric square loss
function.

• In a regression framework, for a given τ , a linear expectile
model is defined as µx(τ) = x′β(τ).

• If τ = 1/2 expectile regression reduces to the standard mean
regression.

• Advantages: uniqueness of the ML solutions, differentiability
of the squared loss function.
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Expectile Hidden Markov Model (cont.)

• Let {St}T
t=1 be a latent, homogeneous, first-order Markov

chain defined on the discrete state space {1, ...,K}.
• We collect the initial and transition probabilities in the

K-dimensional vector π and in the K × K Π matrix,
respectively.

• Let Yt denote a continuous observable response variable and
Xt = (1,Xt2, . . . ,XtP)′, be a vector of P exogenous covariates,
at time t = 1, ...,T.

• The proposed EHMM is defined as Yt = X′
tβk(τ) + ϵtk(τ).
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Expectile Hidden Markov Model (cont.)

• Extending the approach of Waldmann et al. (2017) to the
HMM setting, we use the AN distribution to describe the
conditional distribution of the response given covariates and
the state occupied by the latent process at time t.

AN density function

fY(yt|Xt = xt, St = k) = 2
√
τ(1 − τ)√

πσ2
k(
√
τ +

√
1 − τ)

exp

[
−ωτ

(
yt − µtk

σk

)]
,

(4)
• µtk is defined by the linear model µtk = x′tβk(τ).
• We use the AN distribution as a working likelihood and we

develop an EM algorithm (Baum et al., 1970) to estimate the
parameters.

• The density kernel of AN corresponds to the expectile loss
function. 10



Expectile Hidden Markov Model (cont.)

• For a given number of hidden states K, the EM algorithm runs
on the complete log-likelihood function of the model
introduced, which is defined as

ℓc(θτ ) =
K∑

k=1
γ1(k) log πk+

T∑
t=1

K∑
k=1

K∑
j=1

ξt(j, k) log πk|j+
T∑

t=1

K∑
k=1

γt(k) log fY(yt|xt, St = k),

(5)

• θτ = (β1, . . . , βK, σ1, . . . , σK, π,Π) represents the vector of all
model parameters.

• γt(k) denotes a dummy variable equal to 1 if the latent
process is in state k at occasion t and 0 otherwise.

• ξt(j, k) is a dummy variable equal to 1 if the process is in state
j in t − 1 and in state k at time t and 0 otherwise.
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Expectile Hidden Markov Model (cont.)

• To estimate θτ , the algorithm iterates between, the E- and
M-steps, until convergence.

E-step:

• At iteration (h+1) the unobservable indicator variables γt(k)
and ξt(j, k) in (5) are replaced by their conditional
expectations given the observed data and the current
parameter estimates θ

(h)
τ .

• To obtain the conditional expectations, we obtain that

γ
(h)
t (k) = P

θ
(h)
τ
(St = k|y1, . . . , yT), (6)

ξ
(h)
t (j, k) = P

θ
(h)
τ
(St−1 = j, St = k|y1, . . . , yT) (7)

using the Forward-Backward algorithm of Welch (2003).
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Expectile Hidden Markov Model (cont.)

• The conditional expectation of the complete log-likelihood
function in (5) given the observed data and the current
estimates is

Q(θτ |θ(h)τ ) =
K∑

k=1
γ
(h)
1 (k) log πk +

T∑
t=1

K∑
k=1

K∑
j=1

ξ
(h)
t (j, k) log πk|j +

T∑
t=1

K∑
k=1

γ
(h)
t (k) log fY(yt|xt, St = k).
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Expectile Hidden Markov Model (cont.)

M-step:

• In the M-step we maximize Q(θτ |θ(h)τ ) with respect to θτ to
obtain the update parameter estimates θ

(h+1)
τ .

• The maximization of Q(θτ |θ(h)τ ) can be partitioned into
orthogonal subproblems.

• Initial probabilities πk and transition probabilities πk|j are
updated using:

π
(h+1)
k = γ

(h)
1 (k), k = 1, . . . ,K

and

π
(h+1)
k|j =

∑T
t=1 ξ

(h)
t (j, k)∑T

t=1
∑K

k=1 ξ
(h)
t (j, k)

, j, k = 1, . . . ,K.
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Expectile Hidden Markov Model (cont.)

• the M-step update expression for βk and σ2
k given the

first-order condition yields, for k = 1, ...,K are

β
(h+1)
k =

( T∑
t=1

γ
(h)
t (k)|τ−I(yt < x′tβk)|xtx′t

)−1( T∑
t=1

γ
(h)
t (k)|τ−I(yt < x′tβk)|xtyt

)
,

(8)

σ2
k
(h+1) =

2∑T
t=1 γ

(h)
t (k)

T∑
t=1

γ
(h)
t (k)|τ − I(yt < x′tβ

(h+1)
k )|(yt − x′tβ

(h+1)
k )2, (9)

• which can be computed using Iterative Reweighted Least
Squares data with appropriate weights.

• For fixed τ and K we initialize the EM algorithm by providing
the initial states partition, {S(0)

t }T
t=1, according to a

Multinomial distribution with probabilities 1/K (Maruotti
et al., 2021; Merlo et al., 2022).
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Expectile Hidden Markov Model (cont.)

• From the generated partition, the elements of Π(0) are
computed as proportions of transition.

• We obtain β
(0)
k and σ

(0)
k by fitting mean regressions on the

observations within state k.
• To deal with the possibility of multiple roots we fit the

proposed EHMM using a multiple random starts strategy with
different starting partitions and retain the solution
corresponding to the maximum likelihood value.

• To estimate the standard errors we employ the parametric
bootstrap scheme of Visser et al. (2000).
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Empirical Application

• We apply the methodology proposed to analyze the Bitcoin
daily returns as a function of global leading financial indices.

• As predictors we employ Crude Oil, Standard & Poor’s 500
(S&P500), Gold COMEX daily closing prices and Volatility
Index (VIX) from September 2014 to October 2022.

• We fit the proposed EHMM for different values of K varying
from 2 to 5 at three expectile levels τ = 0.10, 0.50, 0.90.

• To compare models with differing number of states we
compare three widely employed penalized likelihood selection
criteria for K (AIC, BIC, ICL).

• ICL, which favours a more parsimonious choice, select K=2
states for τ = {0.1, 0.5, 0.9}.
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Results

Intercept Crude Oil S&P500 Gold VIX σk

State 1
τ = 0.10 -1.036 (0.280) 0.024 (0.021) 0.595 (0.096) 0.189 (0.072) 0.029 (0.012) 1.433 (0.040)
τ = 0.50 0.122 (0.158) 0.031 (0.072) 0.409 (0.383) 0.263 (0.249) 0.009 (0.036) 1.695 (0.062)
τ = 0.90 1.297 (0.061) -0.009 (0.020) 0.589 (0.088) 0.134 (0.065) 0.014 (0.011) 1.335 (0.041)

State 2
τ = 0.10 -6.52 (0.06) -0.256 (0.096) 2.072 (0.476) 1.032 (0.320) -0.055 (0.058) 4.964 (0.157)
τ = 0.50 0.242 (0.092) -0.056 (0.055) 1.087 (0.357) 0.613 (0.214) -0.025 (0.026) 6.164 (0.169)
τ = 0.90 6.244 (0.229) 0.017 (0.079) 0.948 (0.291) 0.835 (0.249) -0.002 (0.041) 4.692 (0.128)

Table 1: State-specific parameter estimates for three expectile levels, with
bootstrapped standard errors (in brackets) obtained over 1000 replications.
Point estimates are displayed in boldface when significant at the standard 5%
level.
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Conclusions

• We develop a linear expectile hidden Markov model for the
analysis of time series where temporal behaviors of the data
are captured via time-dependent coefficients that follow an
unobservable discrete homogeneous Markov chain.

• We analyze the association between Bitcoin and a collection
of global market indices, not only at the average, but also
during times of market distress.

• Empirically, we find evidence of strong and positive
interrelations among Bitcoin returns and S&P500 and Gold at
the tails of the distribution, while no connection emerges
during tranquil periods (τ = 0.5).
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Simulation Study

• We conduct a simulation study to validate the performance of
our method under different scenarios in terms of

1. recovering the true values of the parameters;
2. assessing the classification behavior of the proposed model;�
3. evaluating the capability of penalized likelihood criteria in

selecting the optimal number of hidden states K.

• We analyze two different sample sizes (T = 500, T = 1000)
and two different distributions for the error term for 500
Monte Carlo simulations, similar to Maruotti et al. (2021).



Simulation Study

• We draw observations from a two state HMM (K = 2) using

Yt =

−1 + 2Xt + ϵt1, St = 1
1 − 2Xt + ϵt2, St = 2,

(10)

with Xt ∼ N (0, 1).
• In the first scenario, ϵtk is generated from a normal

distribution with standard deviation 1. In the second one, ϵtk
is generated from a skew-t distribution with 5 degrees of
freedom and asymmetry parameter 2, for k = 1,2.

• Matrix of transition probabilities is set equal to � =
( 0.9 0.1

0.1 0.9
)
.

• We fit the proposed EHMM at five expectile levels, i.e.,
τ = {0.10, 0.25, 0.50, 0.75, 0.90} and we calculate bias and
standard deviation.



Simulation results

τ 0.10 0.25 0.50 0.75 0.90

Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err
Panel A: T=500
State 1
β1,1 = -1 0.020 0.093 0.010 0.076 -0.002 0.073 -0.018 0.080 -0.048 0.100
β2,1 = 2 0.001∗ 0.109 0.001 0.093 0.004 0.087 0.010 0.089 0.023 0.101
State 2
β1,2 = 1 0.040 0.055 0.013 0.041 -0.002 0.037 -0.013 0.039 -0.027 0.047
β2,2 = -2 -0.008 0.067 0.001∗ 0.058 0.001 0.055 -0.003 0.058 -0.012 0.068

Panel B: T = 1000
State 1
β1,1 = -1 0.021 0.068 0.010 0.055 -0.001 0.051 -0.016 0.056 -0.042 0.070
β2,1 = 2 0.006 0.071 0.003 0.060 0.004 0.057 0.008 0.060 0.017 0.069
State 2
β1,2 = 1 0.039 0.038 0.014 0.029 0.001∗ 0.026 -0.010 0.028 -0.023 0.034
β2,2 = -2 -0.012 0.053 -0.004 0.045 -0.002 0.043 -0.005 0.044 -0.014 0.050

Table 2: Bias and standard error values of the state-regression parameter
estimates with Gaussian distributed errors for T = 500 (Panel A) and T = 1000
(Panel B). ∗ represents values smaller (in absolute value) than 0.001.



Simulation results (cont.)

τ 0.10 0.25 0.50 0.75 0.90

Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err
Panel A: T=500
State 1
β1,1 = -1 -0.064 0.228 -0.009 0.119 -0.004 0.099 -0.018 0.166 0.083 0.489
β2,1 = 2 -0.153 0.319 -0.049 0.183 0.001 0.125 0.027 0.161 -0.045 0.471
State 2
β1,2 = 1 0.181 0.144 0.066 0.073 0.013 0.051 -0.018 0.060 -0.052 0.131
β2,2 = -2 -0.060 0.100 -0.029 0.080 -0.015 0.074 -0.015 0.079 -0.038 0.103

Panel B: T = 1000
State 1
β1,1 = -1 -0.053 0.162 0.001 0.077 -0.004 0.069 -0.022 0.123 0.025 0.369
β2,1 = 2 -0.133 0.236 -0.024 0.111 0.013 0.082 0.039 0.116 0.027 0.319
State 2
β1,2 = 1 0.168 0.101 0.057 0.048 0.010 0.035 -0.019 0.041 -0.059 0.083
β2,2 = -2 -0.067 0.067 -0.033 0.052 -0.016 0.048 -0.015 0.054 -0.031 0.072

Table 3: Bias and standard error values of the state-regression parameter
estimates with skew-t distributed errors for T = 500 (Panel A) and T = 1000
(Panel B).



Simulation results (cont.)

Figure 1: From left to right, box-plots of ARI for the posterior probabilities for
Gaussian (red) and skew-t (blue) distributed errors with T = 500 and
T = 1000.



Simulation results (cont.)

τ 0.10 0.50 0.90

AIC BIC ICL AIC BIC ICL AIC BIC ICL
Panel A: Gaussian errors

K = 1 0 0 0 0 0 0 0 0 0
K = 2 0 84 94 42 84 84 0 81 94
K = 3 10 13 3 35 6 6 9 14 1
K = 4 90 4 4 23 10 10 91 5 5

Panel B: skew-t errors
K = 1 0 0 0 0 0 0 0 0 0
K = 2 0 0 52 0 3 86 0 0 55
K = 3 0 79 44 0 70 12 1 77 39
K = 4 100 21 4 100 28 2 99 23 7

Table 4: Percentage frequency distribution of the selected number of hidden
states K under Gaussian and skew-t errors over 300 replications. We draw
observations from a two state HMM (K = 2), and we fit the EHMM with
K = 1, 2, 3, 4 in order to select the best K associated to the lowest penalized
likelihood criteria.
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