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Intro



Outline

Main goal:

To explore and discuss the potential role of Bayesian ideas and

techniques in modern survey sampling.

Summary:

• the theoretical conflict between design-based methods and the

likelihood principle;

• the ineluctability of a shift towards model-based techniques in

modern survey statistics;

• review of the most prominent and promising ideas for a

Bayesian theory of inference for finite populations.
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Peculiarity of Survey Sampling

Survey Sampling is different from standard inference because:

• In standard inference we observe units and assume that what

we observe is somehow close to an average value. We actually

do not care about individual values

• In survey sampling, we are interested in the entire vector of

the values of some variables. However, some of them are

perfectly detected, but most of them are unknown.
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The conflict in a simple context

• Simple random sampling w/o replacement drawn from a

population P with N identified units.

• N is known and units identified through their labels

{1,2, . . . ,N}.
• Draw a sample s of size n and assume that the randomization

scheme assigns a probability p(s) to this specific sample.

• Quantity of interest is the vector of values of a variable Y on

the entire population, YP = (y1,y2, . . . ,yN), or maybe

τ = f (YP), after observing YP\s .
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The conflict in a simple context

• Design-based approach based on the H-T strategy: take an

empirical version of τ, with the n observations weighted with

the inverse of their probabilities to be included in the sample.

• Unbiasedness is referred to the randomization scheme (the

sampling design).

• Basu formally showed that the likelihood function for YP (or

τ) is flat , i.e.

L(YP\s ;Ys) =

k for all YP\s compatible with Ys

0 otherwise
.
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Conflict III

• Many scientists have interpreted this result as evidence of a

general inadequacy of the L - and the likelihood principle itself

- as the main inferential instrument in this framework.

• Basu and other Bayesians believe that this context offers an

example where L provides obvious but correct results, and this

clarifies the insufficient level of modeling of the design-based

methods.

• There is no explicit association or link between what we

observe and what we don’t . . .
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Conflict IV

This is precisely the core of the discussion as reported in Ghosh and

Meeden [1997]:

As we remarked before, the basic problem of finite pop-

ulation sampling is deciding what one learns about the

unobserved units from the observed sampled units.
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Different views

• From a design perspective, the link is given by the

representativeness of the sample.

• From a model-based perspective, the Ys and YP\s are conditionally

independent with a common distribution

• from a Bayesian perspective the link is explicitly provided by the

notion of exchangeability

• the Polya Posterior approach (aka Bayesian Bootstrap in finite

population) automatically assumes similarities among Ys and YP\s .

• A common view: The unseen should be similar to the seen ...
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How to justify procedure

1. Design-based procedures are justified in terms of unbiasedness . It

works on average, but may dramatically fail (recall the Jumbo &

Sambo example by Basu [1971])1

2. Model-based procedures are likelihood slaves and they work as long

as the model is sensible and provides a good fit

3. A Bayesian procedure is justifiable when the implicit prior used is a

sensible prior.

Here sensible means, at least, with full support and not so

concentrated . . .

1The Circus Example, D. Basu (1971)

https://www.umass.edu/cluster/ed/unpublication/yr2000/c00ed72.PDF
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Two Bayesian proposals



Two (or maybe more . . . ) Bayesian proposals.

• Calibrated Bayesian strategy [Little, 2022]

• Polya Posterior [Ghosh and Meeden, 1997]

• Bayesian nonparametrics [Mendoza et al., 2021]
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Calibrated Bayes I

• Little [2011] (or Little [2022]) has strongly advocated the use of

Bayesian methods in survey sampling and, more generally, in Official

Statistics.

• Main point: a compromise between various approaches.

• While inference procedures should follow a Bayesian road, design

features like clustering and stratification should be explicitly

incorporated into the model in order to avoid the sensitivity of

inference to model misspecification.
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Calibrated Bayes II

Quoting Little [2022],

a purely design-based approach to finite population inference is no longer

able to

adequately address many of the problems of modern sample

survey

and a model-based approach is deemed necessary. In this respect,

developments in SAE represented the Trojan horse.

• However, the model-based approach should be dressed in a Bayesian

suit in order to incorporate in a more natural way survey sample

design features.
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Calibrated Bayes III

The model-based framework expressed by the equation

ps,y ;z(s,y ;z ,θ ,ψ) = py ;z(y ;z ,θ)ps|y ;z(s|y ;z ,ψ),

• Here θ is a vector of parameters directly related to the variable of

interest y and ψ only refers to the mechanism of inclusion.

• Ignore the non-response, issue: then S |Z ,Y does not depend on Y .

• The likelihood contribution to inference is restricted to py |z(y ;z ,θ).

• Combined with a prior on θ , it produces a posterior predictive

distribution

P(YP\s |Ys ,z) =
∫

p(YP\s |Ys ;z ,θ)p(θ |Ys ;z)dθ
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Calibrated Bayes IV

• The above consideration simply rules out any chance that the

Bayesian answers could be efficient from a frequentist perspective if

the word “frequentist ” is meant in terms of the sampling

mechanism.

• We believe that the frequentist properties should be considered

either with respect to the conditional model induced by the family

of distributions py ;z(y ;z ,θ), or to the joint distribution

py ,s;z(y ,s;z ,ψ,θ).

• It is known [see Berger et al., 2009, Consonni et al., 2018] that a

correct frequentist coverage of Bayesian procedures can be obtained

only through the use of formal “noninformative” priors [see Berger

et al., 2009, Consonni et al., 2018].
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Priors

• The use of extra-data information represents one of the

distinguished features of Bayesian inference.

• The term extra-data is often interpreted as subjective

• There are many instances where previous knowledge can be

adequately used to train our model, for example, periodical releases

of indexes.
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Polya Posterior

• It can be considered the finite population adaptation of the

Bayesian Bootstrap [Rubin, 1981].

• In the simplest scenario: Population of N units; we draw a SRS of

size n, say Ys .

• goal: to estimate the mean θ of some function h(YP).
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PP: how it works

1. Put the n observed units in another urn U2 and let the other N−n

units in the original urn U1 .

2. draw a unit from U2, and record its value y ;

3. draw a unit from U1, attach to it the y value and replace both units

in U2;

4. repeat steps 2-3 until U1 is empty.
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The Pseudo-Posterior

• This way we simulate a single realization of the entire population.

• Repeat the procedure a huge number M of times, to get a

pseudo-posterior distribution of YP and θ

• This is only a pseudo-posterior since “no prior” has been introduced.

However . . .

20 / 24



A result from Lo [1988]

Assume to observe in Ys , k distinct values; let nj be their frequencies

(j = 1; . . . ,k). Let m∗
j be the random frequencies of the k distinct values

in a single Polya experiment. Then the following statements hold:

• The random vector (m∗
1, . . . ,m

∗
k)|Ys is Dirichlet-Multinomial

[Mosimann, 1962] with parameters (N−n;n1,n2, . . . ,nk)

• As N → ∞,(
m∗

1

N−n
, . . . ,

m∗
k

N−n

)
|Ys

d→ Dirichlet(n1,n2, . . . ,nk),

• This also implies that the implicit prior for the Polya Posterior is a

Dirichlet(0, . . . ,0) on any set of observed (in the sample)

frequencies.

• Not so easy to handle complex schemes although several extensions

have been proposed (Strief and Meeden [2013], Lazar et al. [2008]

etc.)
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Bayesian nonparametrics

• In the last 20 yrs we experienced an explosion, both in theoretical and

applied terms, of Bayesian nonparametric methods.

• Survey sampling has not yet been hit by this wave although the seminal

papers by Lo [1986, 1988] seem to have paved the way.

• Some recent exceptions are Mendoza et al. [2021] and Savitsky and

Toth [2016], Paddock [2002].

• Model considered until now are very simple. However, we believe there

is much to do along this path . . .
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Conclusions

• FPS is an important and peculiar chapter of Statistics.

• it deserves particular attention and a specifically suited methodology.

• Bayesian inference is a solid, prescriptive, and coherent

mathematical theory, sometimes difficult to combine with the

practical difficulties of FPS.

Basu himself, the leader of the anti-design party wrote

The Bayesian as a surveyor must make all kinds of compromises...

He may even agree to introduce an element of randomization into his

plan... I can not put this enormous speculative process into a jacket

of a theory. I happen to believe that data analysis is more than a

scientific method...
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