Fisher's noncentral hypergeometric distribution for the size estimation of graduated unemployed in Italy

> Veronica Ballerini¹ veronica.ballerini@unifi.it

> > a joint work withBrunero Liseo²

¹Now at DiSIA, University of Florence ²MEMOTEF, Sapienza University of Rome

XII Giornata della Ricerca MEMOTEF June 1, 2022 During my PhD we have addressed the following questions:

- How to estimate the population size when a single list of records is available?
- e How to estimate/take into account the bias given by a MNAR mechanisms when estimating a population size?

3 1 4 3 1

The motivating study

How many people are still unemployed one year after they graduated?

Dataset: Graduates' Employment Status Survey (GESS) by AlmaLaurea

- response rates < 100%
 - we expect the propensity to participate in the survey for purely statistical purposes to be different between those employed and those who have not found a job yet

 \implies MNAR mechanism!

In other words: we conduct a survey and observe x_1 still unemployed and x_2 already employed individuals. We assume

> $X_1 \sim \text{Binom}(M_1, p_1)$ $X_2 \sim \text{Binom}(M_2, p_2)$ $\frac{p_1/(1-p_1)}{p_2/(1-p_2)} = w \neq 1$

V. Ballerini

《日》 《日》 三日

How to estimate M_1 and M_2

- We need to estimate the odds ratio w, i.e., the unemployed's exposure in the AlmaLaurea survey
- To this aim we
 - ▶ leverage the Fisher's noncentral hypergeometric model, and
 - exploit the information from another data source: ISTAT (random) sample.

NCH describe $biased\ urn$ experiments

 \Rightarrow each color has its own weight

NCH describe *biased urn* experiments

 \Rightarrow each color has its own weight

NCH are underused in the literature

- confusion around the existence of two different NCH distributions Fog (2008)
 - Wallenius' (see Wallenius (1963))
 - Fisher's (see Fisher (1935))
- computational complexity given by their probability mass functions

NCH describe *biased urn* experiments

 \Rightarrow each color has its own weight

NCH are underused in the literature

- confusion around the existence of two different NCH distributions Fog (2008)
 - Wallenius' (see Wallenius (1963))
 - Fisher's (see Fisher (1935))

• computational complexity given by their probability mass functions BUT

- Fisher's NCH has great potential in the official statistics field
- Wallenius NCH is potentially a flexible model when dealing with preferences

Assume

$$X_1 \sim \operatorname{Binom}(M_1, p_1) \quad X_2 \sim \operatorname{Binom}(M_2, p_2)$$

Then,

$$X_1|X_1 + X_2 = n \sim \text{FNCH}(M_1, M_2, n, w)$$

where w is the odds ratio

$$\frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

V. Ballerini

프 🖌 🛛 프

Estimating the number of unemployed graduates in Italy

Three steps:

- 1 estimation of the number of unemployed graduates (M_1) among the 2011 cohort exploiting
 - the ISTAT sample (assume w = 1) and
 - the Anagrafe Nazionale degli Studenti registered values $(N = M_1 + M_2 \text{ known});$
- 2 estimation of the response bias in the Graduates' Employment Status Survey 2012 exploiting the results at step 1;
- 3 prediction of the size of unemployed graduates from the 2012 to the 2020 cohort, assuming the response bias to remain constant over years.

化橡胶 化医胶体医胶体 医

Results

Promptly employed people are generally more inclined to answer the questionnaire

- differences among disciplines: e.g., employed economists are about 10 times more exposed than unemployed ones, while *unemployed* jurists tend to respond more (about 2.5 times): practicum?
- differences between men and women

3 1 4 3 1

Results

Promptly employed people are generally more inclined to answer the questionnaire

- differences among disciplines: e.g., employed economists are about 10 times more exposed than unemployed ones, while *unemployed* jurists tend to respond more (about 2.5 times): practicum?
- differences between men and women

... what if we have more categories?

The multivariate case

In the multivariate case, things become more challenging: it is possible to evaluate the likelihood in principle, but as N and C increase, it becomes computationally costly.

$$\text{FNCH}(\boldsymbol{x}|\boldsymbol{M}, n, \boldsymbol{w}) = \frac{\prod_{c=1}^{C} \binom{M_c}{x_c} w_c^{x_c}}{\sum_{\boldsymbol{z} \in \boldsymbol{\mathcal{Z}}} \prod_{c=1}^{C} \binom{M_c}{z_c} w_c^{z_c}}$$

where
$$\mathcal{Z} = \{ \boldsymbol{x} \in \mathbb{N}_{0}^{C} : \sum_{c=1}^{C} x_{c} = n, 0 \le x_{c} \le M_{c}, c = 1, \dots, C \}$$

Two proposals:

- exploiting the conditional structure of the FNCH to implement still a MCMC
- Approximate Bayesian Computation

References

- R. A. Fisher. The logic of inductive inference. Journal of the Royal Statistical Society, 98(1):39–82, 1935.
- A. Fog. Sampling methods for Wallenius' and Fisher's noncentral hypergeometric distributions. *Communications in Statistics—Simulation and Computation*, 37(2):241–257, 2008.
- K. T. Wallenius. Biased sampling; the noncentral hypergeometric probability distribution. Technical report, Stanford University CA Applied Mathematics and Statistics Labs, 1963.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()