A Bayesian Spatio-Temporal Model for the Climate-Conflict Nexus in Africa

> Caterina Conigliani Elena Paglialunga

Valeria Costantini Andrea Tancredi

MEMOTEF 26-6-2023

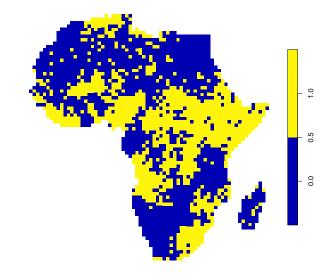
## The data set

- Spatio-temporal data comprising the armed conflicts on the entire African continent based on a grid of 2,653 cells at 1 degree resolution (each cell covers an area of around 110×110 km).
- The yearly database covers the time span 1990-2016
- Information on violent events is extracted from the Uppsala Conflict Data Project - Georeferenced Event Dataset (UCDP). The database includes only events with at least one battle-related death

- Covariates: population, GPD, Gini index, forest (0/1), desert (0/1), (forest 0/1), city(0/1), ethnic group... and SPEI
- The Standardized Precipitation Evapotranspiration Index (SPEI) measures the onset, duration, and magnitude of drought/flood conditions with respect to normal conditions.
  - Positive values: excess of floods
  - Negative values excess of drought
- For the period 2017-2050 we have the SSP scenarios<sup>1</sup>

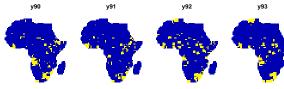
<sup>&</sup>lt;sup>1</sup>Shared Socioeconomic Pathways (SSPs) are scenarios of projected socioeconomic global changes up to 2100

Cells with at least a conflict 1990-2016



42.5% of the cells had at least a conflict during the period 1990-2016

#### Temporal evolution 1990-2001



y94

y95

y97







y96



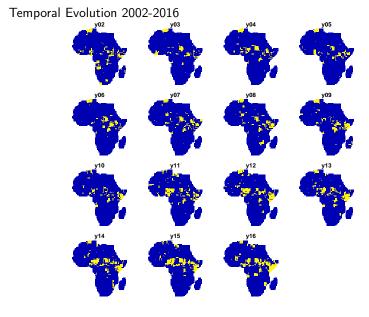
y98

y99

y00

y01





# Aim of the study

- To investigate the implication that climate and socio-economic variables may have on violence
- Accounting for spatial and temporal dependence

# Aim of the study

- To investigate the implication that climate and socio-economic variables may have on violence
- Accounting for spatial and temporal dependence

#### Besag model

Let  $\eta_i$  be a variable for cell *i*. A Gaussian Markov random field can be specified by the conditional distributions  $\eta_i | \{\eta_j\}_{j \neq i}$ 

A common choice is to assume

$$\eta_i | \{\eta_j\}_{j \neq i} \sigma^2 \sim N\left(\tilde{\eta}_i, \ \frac{\sigma^2}{n_i}\right)$$

where

$$\tilde{\eta}_i = \frac{1}{n_i} \sum_{j \sim i} \eta_j$$

denotes the mean of the  $n_i$  spatially neighbouring cells of cel i, and  $\sigma^2$  is an unknown variance parameter<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Queen adjacency matrix for conflict data (a single point is enough to share a boundary)

- The Besag model is not proper
- There are linear combinations of the variables that have infinite variance or zero precision...this is not allowed in a proper distribution.
- In the Besag model it is caused by the fact that the conditional distributions give no information about the mean
- The problem is that it only accounts for similarities between regions
- The solution is to add an i.i.d. random effect in each region (a random intercept)^3  $\,$

<sup>&</sup>lt;sup>3</sup>BYM model from Besag, York and Mollie'

- For instance, suppose that y<sub>it</sub> is the indicator variable for the conflict in cell *i*, year *t*
- We can suppose that

$$y_{it} \sim \mathsf{Bernoulli}(\lambda_{it})$$

where

$$\eta_{it} = logit(\lambda_{it}) = \mu + u_i + v_i + f(c_{it})$$

Structured/spatial component u
 Unstructured component v (i.i.d cell effect)
 f(c) is the non-linear effect of a covariate c

• The model in R-INLA

Time used:

Pre = 1.41, Running = 8.4, Post = 0.131, Total = 9.95 Fixed effects:

|                | mean   | sd    | 0.025quant | 0.5quant | 0.975quant | mode   | kld |
|----------------|--------|-------|------------|----------|------------|--------|-----|
| (Intercept)    | -7.082 | 0.261 | -7.596     | -7.081   | -6.571     | -7.080 | 0   |
| eth_group      | 0.124  | 0.040 | 0.046      | 0.124    | 0.202      | 0.124  | 0   |
| l1lnpop_ssp2   | 0.099  | 0.011 | 0.078      | 0.099    | 0.119      | 0.098  | 0   |
| d_city         | 0.732  | 0.096 | 0.544      | 0.732    | 0.921      | 0.732  | 0   |
| d_desert       | -0.500 | 0.270 | -1.028     | -0.500   | 0.030      | -0.500 | 0   |
| speiextTRUE    | 0.173  | 0.043 | 0.088      | 0.173    | 0.258      | 0.173  | 0   |
| gdp_pcvar_ssp2 | -3.898 | 0.264 | -4.415     | -3.898   | -3.382     | -3.898 | 0   |
| l1gini2_ssp2   | 2.297  | 0.232 | 1.842      | 2.296    | 2.752      | 2.296  | 0   |
| l1t45mvy_mean  | 0.525  | 0.050 | 0.427      | 0.525    | 0.624      | 0.525  | 0   |

Random effects: Name Model id BYM model

Model hyperparameters:

|                                   | mean       | sd       | 0.025quant | 0.5quant |
|-----------------------------------|------------|----------|------------|----------|
| Precision for id (iid component)  | 2221.390 1 | L221.185 | 531.053    | 1930.154 |
| Precision for id (spatial compone | ent) 0.096 | 0.004    | 0.088      | 0.096    |
|                                   | 0.975quant | : mod    | le         |          |
| Precision for id (iid component)  | 5210.870   | 1455.71  | .2         |          |
| Precision for id (spatial compone | ent) 0.103 | 3 0.09   | 7          |          |
|                                   |            |          |            |          |

. . . . . . . .

Marginal log-Likelihood: -13581.99

## Spatio-Temporal model

We can add a temporal effect by assuming that

$$\eta_{it} = logit(\lambda_{it}) = \mu + u_i + v_i + \gamma_t + \phi_t + f(c_{it})$$

where

-  $\gamma_t$  represents the temporally structured effect, modeled dynamically as a random walk

$$\gamma_t | \gamma_{t-1} \sim N(\gamma_{t-1}, \sigma_{\gamma}^2)$$

•  $\phi_t$  represents the temporally unstructured effect (i.i.d.)

```
mgr2=inla(ncpos~1+eth_group+l1lnpop_ssp2+ d_city+d_desert+speiext+
    gdp_pcvar_ss<<<p2+l1gini2_ssp2+l1t45mvy_mean+
    f(id,model="bym",graph=B)+
    f(year,model="rw1")+
    f(year2,model="iid"),
    family="binomial",data=mydata)
```

Pre = 1.46, Running = 31.6, Post = 0.131, Total = 33.2 Fixed effects:

|                | mean   | sd    | 0.025quant | 0.5quant | 0.975quant | mode   | kld |
|----------------|--------|-------|------------|----------|------------|--------|-----|
| (Intercept)    | -8.079 | 0.369 | -8.819     | -8.073   | -7.372     | -8.057 | 0   |
| eth_group      | 0.119  | 0.039 | 0.043      | 0.119    | 0.196      | 0.119  | 0   |
| l1lnpop_ssp2   | 0.217  | 0.029 | 0.163      | 0.215    | 0.276      | 0.211  | 0   |
| d_city         | 0.665  | 0.096 | 0.477      | 0.665    | 0.855      | 0.665  | 0   |
| d_desert       | -0.060 | 0.278 | -0.604     | -0.061   | 0.485      | -0.061 | 0   |
| speiextTRUE    | 0.110  | 0.046 | 0.019      | 0.110    | 0.201      | 0.110  | 0   |
| gdp_pcvar_ssp2 | -3.439 | 0.295 | -4.018     | -3.439   | -2.860     | -3.439 | 0   |
| l1gini2_ssp2   | 1.740  | 0.249 | 1.251      | 1.740    | 2.227      | 1.741  | 0   |
| l1t45mvy_mean  | 0.579  | 0.056 | 0.469      | 0.579    | 0.689      | 0.579  | 0   |

Random effects: Name Model id BYM model year RW1 model year2 IID model

Model hyperparameters:

|                                      | mean          | sd 0.025quant | 0.5quant |
|--------------------------------------|---------------|---------------|----------|
| Precision for id (iid component)     | 653.302 777.3 | 305 131.615   | 421.153  |
| Precision for id (spatial component) | 0.106 0.0     | 0.094         | 0.105    |
| Precision for year                   | 50.443 45.7   | 780 8.854     | 37.264   |
| Precision for year2                  | 15.597 16.7   | 763 2.777     | 10.592   |
|                                      | 0.975quant    | mode          |          |
| Precision for id (iid component)     | 2611.30 23    | 30.869        |          |
| Precision for id (spatial component) | 0.12          | 0.104         |          |
| Precision for year                   | 171.79        | 21.295        |          |
| Precision for year2                  | 59.05         | 5.908         |          |

Marginal log-Likelihood: -13496.49

### Time-space interaction

The time effect and the spatial effect can also interact

$$\eta_{it} = logit(\lambda_{it}) = \mu + u_i + v_i + \gamma_t + \phi_t + \delta_{it} + f(c_{it})$$

Four types of interactions

- Type 1: interaction between the unstructured effects  $v_i$  and  $\phi_t$ . Time and space effects are still independent
- Type 2: interaction between the unstructured spatial effects  $u_i$  and the structured temporal effect  $\gamma_t$ . Each cell has a temporal correlation structure, but neighboring cells have independent temporal correlations

- Type 3: Interaction between the structured spatial effects  $v_i$  and the unstructured temporal effect  $\phi_t$ . The spatial trends are different from year to year, but they are independent
- Type 4: Interaction between the structured spatial effects  $v_i$  and the structured temporal effect  $\gamma_t$ . The spatial trends are different from year to year, but they are dependent

```
Type 1 inetraction
```

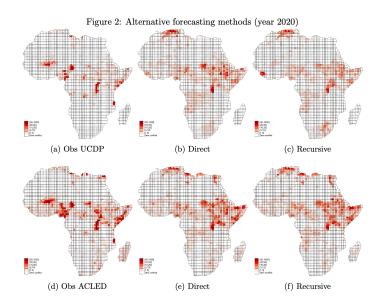
```
Time used:
   Pre = 1.86, Running = 117, Post = 1.1, Total = 120
Fixed effects:
                      sd 0.025quant 0.5quant 0.975quant mode kld
               mean
(Intercept)
             -8.095 0.369
                            -8.847 -8.084
                                            -7.401 -8.059
                                                             0
eth aroup
            0.120 0.039
                            0.043
                                   0.120
                                              0.196 0.120
                                                             0
111npop ssp2 0.219 0.029
                            0.168 0.216
                                               0.278 0.211
                                                             0
d citv
              0.666 0.097
                            0.477 0.666
                                               0.855 0.665
                                                             0
d desert
           -0.049 0.277
                            -0.592
                                   -0.050
                                              0.495 -0.050
                                                             0
                                   0.110 0.200 0.110
            0.110 0.046
                            0.019
                                                             0
speiextTRUE
gdp_pcvar_ssp2 -3.482 0.295 -4.060
                                   -3.482 -2.904 -3.482
                                                             0
                         1.237 1.726
l1gini2 ssp2 1.726 0.249
                                             2.212 1.727
                                                            0
                                               0.683 0.573
l1t45mvv mean 0.573 0.056
                         0.463 0.573
                                                             ø
Random effects:
 Name
        Model
   id BYM model
  vear RW1 model
  vear2 IID model
  idt IID model
Model hyperparameters:
                                              sd 0.025quant 0.5quant
                                    mean
Precision for id (iid component) 9.63e+02 1.72e+03
                                                    36.474 4.63e+02
Precision for id (spatial component) 1.05e-01 6.00e-03 0.093 1.04e-01
Precision for year
                                 2.95e+03 9.52e+03
                                                    54.692 9.06e+02
Precision for year2
                                 5.58e+00 2.56e+00 1.702 5.24e+00
Precision for idt
                                 1.81e+04 1.66e+04 2459.975 1.34e+04
                                 0.975quant
                                              mode
Precision for id (iid component)
                                   5.03e+03 88.895
Precision for id (spatial component) 1.18e-01 0.103
Precision for year
                                  1.87e+04 119.038
Precision for year2
                                  1.14e+01 4.282
Precision for idt
                                   6.22e+04 6654.114
```

### Discussion

Things done, to do, and to understand

- Zero-inflated negative binomial for the number of conflicts (similar model, done)
- Better modeling of the spei effect (extreme spei+sign spei+extreme:sign spei vs |spei|+sign spei+sign; |spei|) (under evaluation)
- Type 4 interaction (to do, computational problems!)
- Model comparison (DIC, WAIC...are provided by INLA, but still to do with once the type 4 interaction is obtained)
- Forecasting (to understand how to do with INLA...but we are there )

#### Predictions under a non-Bayesian model



Note: Number of conflicts events are expressed as three-year average (2017-2020).

#### Predictions under a non-Bayesian model

