A generalized no-arbitrage principle in a finite setting

Andrea Cinfrignini

XII Giornata della Ricerca MEMOTEF 31 May 2022

1/9

Cinfrignini A.

Introduction

The classical one-period no-arbitrage pricing theory assumes that:

- the market is frictionless and competitive,
- there exists a reference probability P.

The classical **no-arbitrage condition** is equivalent to the existence of a **linear pricing rule**, that can be expressed as a **discounted expectation** with respect to an equivalent risk-neutral probability $Q \sim P$.

Goal

We look for a pricing rule that allows to model **frictions** in the financial market: such pricing rule has to be, generally, **non-linear**. Hence, dropping the fundamental assumptions of the classical no-arbitrage theory, a generalization of the no-arbitrage principle is required.

2/9

Frictions

Real markets show the presence of frictions such as transaction costs, taxes, bid-ask spreads. Generally, in frictional market models the pricing rule is non-linear.

Chateauneuf et al. (1996) firstly consider a **lower (upper)** pricing rule π that can be expressed as the discounted Choquet integral with respect to a **convex (concave)** non-additive risk-neutral capacity ν :

$$\pi(\cdot) = (1+r)^{-1} \mathbb{C}_{\nu}(\cdot). \tag{1}$$

For a convex ν , the Choquet expectation can be interpreted as a lower expectation computed among probability measures in the core of ν

$$\mathbb{C}_{\nu}(\cdot) = \min_{P \in \operatorname{core}(\nu)} \mathbb{E}_{P}(\cdot), \text{ where } \operatorname{core}(\nu) = \{P \text{ probability } : P \geq \nu\}.$$

Choquet pricing rules, generally, do not guarantee that the market is free of arbitrage in the classical sense.

Cinfrignini A. 3/9

Generalized no-arbitrage (1)

Given a functional $\pi:\mathbb{R}^\Omega\to\mathbb{R}$, a series of papers aimed at determining when π can be expressed as the (discounted) Choquet integral with respect to a convex (concave) capacity.

Chateauneuf et al. (1996) and Cerraia-Vioglio et al. (2015) consider two forms of put-call parity in relation to Choquet pricing:

$$\pi(X_T) = \pi(C_T) + \pi(-P_T) + \pi(k1_{\Omega}). \tag{CV}$$

$$\pi(P_T) = \pi(C_T) + \pi(-X_T) + \pi(k1_{\Omega}), \tag{CH}$$

(CV) characterizes a Choquet pricing rule, while (CH) is equivalent to (CV) and no bid-ask spreads.

Bastianello et al. (2022) and Chateauneuf and Cornet (2022) prove that a Choquet pricing rule satisfies a form of no-arbitrage if and only if there exists a probability dominated by the capacity associated to the pricing functional.

Cinfrignini A. 4/9

Generalized no-arbitrage (2)

Previous approaches consider a pricing rule already defined on the set of all random variables \mathbb{R}^{Ω} . The most common situations is to have a lower (upper) price assessment only on a finite set of reference assets.

Cinfrignini et al. (2021) obtained a generalization of the **first fundamental theorem of asset pricing** in a one-period belief function space, proving that generalized no-arbitrage is equivalent to existence of an equivalent risk-neutral belief function whose discounted Choquet expectation agrees with the given lower prices.

Partially resolving uncertainty (PRU) assumption Jaffray (1989)

The portfolio's payoff is defined assuming that the agent may acquire the information that an event $B \neq \emptyset$ occurs without knowing which is "true" state $\omega \in B$.

Cinfrignini A.

Conclusions and future perspectives

- The generalized no-arbitrage condition is equivalent to the existence of a (positive) belief function whose discounted Choquet expectation agrees with the given lower prices.
- Our aim is to improve the pricing rule in terms of discounted Choquet expectation extending the notion of arbitrage opportunity and theorems connected with it from the one-period to the multi-period setting.
- We need to define a Choquet expectation $\mathbb{C}[\cdot|\mathcal{F}_t]$ conditional to a filtration $\{\mathcal{F}_t\}$ satisfying suitable versions of Markov, time-homogeneity and martingale properties.

Cinfrignini A.

Thank you for the attention!

Cinfrignini A. 7/9

Partial references (1/2)

- Bastianello L., Chateauneuf A., Cornet B., (2022). Put-Call Parities, absence of arbitrage opportunities and non-linear pricing rules. arXiv:2203 16292
- CERRAIA-VIOGLIO S., MACCHERONI F., MARINACCI M., (2015). Put-Call parity and market frictions. Journal of Economic Theory, Elsevier, 157(C), 730-762.
- CHATEAUNEUF A., CORNET B., (2022). The risk-neutral non-additive probability with market frictions. Econ Theory Bull, 10, 13–25.
- CHATEAUNEUF A., KAST R., LAPIED A., (1996). Choquet pricing for financial markets with frictions. Mathematical Finance. 6. 323-330.
- CHOQUET G., (1953). Theory of capacities. Annales de l'Institut Fourier, 5. 131–295.

Cinfrignini A. 8/9

Partial references (2/2)

- CINFRIGNINI A., PETTURITI D., VANTAGGI B., (2021). Envelopes of equivalent martingale measures and a generalized no-arbitrage principle in a finite setting. arXiv:2107.01240
- CINFRIGNINI A., PETTURITI D., VANTAGGI B., (2022). Markov and time-homogeneity properties in Dempster-Shafer random walks. Proceedings of the 19th International conference on Information Processing and Management of Uncertainty in knowledge-based systems (IPMU22).
- GILBOA I., SCHMEIDLER D., (1994). Additive representations of non-additive measures and the Choquet integral. Ann Oper Res 52, 43–65.
- JAFFRAY, J-Y., (1989). Coherent bets under partially resolving uncertainty and belief functions. Theory and Decision 26, 2, 99-105.
- PLISKA S.R., (1997). *Introduction to mathematical finance. Discrete time models.* Blackwell Publishing, Oxford.
- WALLEY P., (1991). Statistical Reasoning with Imprecise Probabilities.

 Chapman and Hall, London.

Cinfrignini A. 9/9