On Time Lag Detection Between Time Series Sampled by Eddy Covariance Systems

Domenico Vitale and ICOS-ETC Teams

MEMOTEF Department, Sapienza Università di Roma domenico.vitale@uniroma1.it

XIII Giornata della Ricerca MEMOTEF

27-28 Giugno 2023

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 1 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Overview

- 2 Eddy Covariance Data and Time Lag Issue
- 3 The Pre-Whitening with Bootstrap (PWB) Procedure

4 Application

Domenico Vitale and ICOS-ETC Teams

The Climate Change Context

Carbon dioxide over the last 800000 years measured from the EPICA Dome C ice core in Antarctica. Recent measurements are from NOAA Mauna Loa site. Source: https://climate.nasa.gov/evidence/

Domenico Vitale and ICOS-ETC Teams

Sar

イロト イポト イヨト イヨト 二日

The Climate Change Context

Idealized models of the natural and human enhanced greenhouse effect. Source: https://www.nps.gov/goga/learn/nature/climate-change-causes.htm

27-28 Giugno 2023 4 / 18

Sar

< => < => < => < =>

The Climate Change Context

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 5 / 18

990

イロト イポト イヨト イヨト 二日

The Eddy Covariance Data

- The eddy covariance (EC, Aubinet et al, 2012) is a modern scientific method used to monitoring the rate of exchanges of GHGs between ecosystems and the atmosphere
- The basic setup of an EC system requires a sonic anemometer for the wind velocity components and a gas analyzer for scalar atmospheric concentrations

- EC variables are sampled at *ultra* high-frequency (e.g. 10 obs per sec) and collected in raw data files of 30 min length (this means sampling 1800 obs for each variable every 30 mins; storing and processing 48 raw data files per day, 17520 raw data files per year, and so on)
- Half-hourly EC fluxes are derived from the covariance between vertical wind speed (w) and the atmospheric concentration of the gas, like CO₂

The Eddy Covariance Networks

The ICOS station network (https://www.icos-cp.eu)

The FLUXNET network (https://fluxnet.org)

The Time Lag Issue

- The calculation of EC fluxes requires the instantaneous guantities of vertical wind velocity (w) and atmospheric concentration of the scalar of interest (c) be simultaneously measured
- Such a condition is not perfectly fulfilled during field measurements because in general there is no perfect co-location of the anemometer and the gas analyzer
- The most used procedure consists of identifying the time lag in correspondence of the timestep that • maximizes (in absolute terms) the covariance between c and w (MaxCov)

Cross-Cov

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 8/18

Sar

< => < => < => < =>

The Pre-Whitening with Bootstrap (PWB) Procedure

The proposed procedure for time lag detection consists of the following steps:

Select the X and Y variables, where the X-variable is the atmospheric scalar concentration of interest (e.g. CO₂, H₂O, N₂O, CH₄) and the Y-variable is one of vertical wind speed or sonic temperature

Pre-Whitening

Filter the X variable via an AR filter to retrieve *iid* residuals (X_R) Filter the Y variable via the same AR filter to retrieve residuals (Y_R)

3 Bootstrapping

Compute *n* block-bootstrapped versions of X_R^i and Y_R^i , for i = 1, ..., n


```
Compute n CCFs between X_R^i and Y_R^i
For each CCF, select the plausible time lag in correspondence of the maximum (in abs terms)
```

5 Optimal Time Lag Detection and Uncertainty Quantification

Given the distribution of the n plausible time lags

- 1. select the optimal time lag in correspondence of the modal value
- 2. estimate the 50% Highest Density Interval (HDI) as a measure of uncertainty

The proposed procedure is implemented in the RFlux R package available at https://github.com/icos-etc/RFlux

27-28 Giugno 2023 9 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Pre-whitening

$$r_k(X,Y) = \frac{\sum (X_t - \overline{X})(Y_{t-k} - \overline{Y})}{\sqrt{\sum (X_t - \overline{X})^2} \sqrt{\sum (Y_t - \overline{Y})^2}}$$

If X and Y are *iid*, $E(r_k) = 0$ and $Var(r_k) \approx \frac{1}{n}$ which leads to the conventional confidence intervals (CIs) When X and Y are not *iid*

$$\mathsf{Var}(r_k) \approx \frac{1}{n} \left[1 + 2 \sum_{k=1}^{n} \rho_k(X) \rho_k(Y) \right]$$

where $\rho_k(X)$ and $\rho_k(Y)$ are the autocorrelation estimates at lag k of X and Y, respectively. For example, for two AR(1) processes, independent of each other,

$$\operatorname{Var}(r_k) \approx \frac{1 + \phi_X \phi_Y}{n(1 - \phi_X \phi_Y)} \rightarrow +\infty \text{ when } \phi_X \phi_Y \text{ is close to } 1!$$

Prewhitening aims at avoiding the risk of spurious correlations and consists of

1. removing the contribution of autocorrelations from at least one of the variables involved in the CCF:

$$\tilde{X}_t = (1 - \pi_1 B - \pi_2 B^2 - \dots - \pi_p B^p) X_t = \pi(B) X_t$$

- 2. transforming the Y in \tilde{Y} by means of the same (linear) filter $\pi(B)$
- 3. evaluating the CCF between \tilde{X} , \tilde{Y} using conventional CIs

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 10 / 18

Block-Bootstrapping

Illustration courtesy of El Anbari, Abeer, and Ptitsyn (2015) https://doi.org/10.1371/journal.pone.0131111

- Block-bootstrap is performed on pre-whitened variables
- aims to mimic measurements from repeated sampling
- enhances the accuracy of time lag detection by reducing the effect of noise

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 11 / 18

Illustrative examples on simulated data

Time lag detection between simulated bivariate VAR(1) processes characterized by: panel a: $\rho(X, Y) = 0.1$ panel b: $\rho(X, Y) = 0.05$ panel c: $\rho(X, Y) = 0.005$ simulated misalignment: 20 steps

Domenico Vitale and ICOS-ETC Teams

Illustrative examples on EC raw data

Time lag detection between EC raw data characterized by:

panel a: high signal-to-noise ratio

panel b: low signal-to-noise ratio

panel c: non-stationary conditions

(time lags detected by PWB and MaxCov are denoted in red and black, respectively)

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 13 / 18

イロト イボト イヨト イヨト

Sac

Methods Comparison

Domenico Vitale and ICOS-ETC Teams

27-28 Giugno 2023 14 / 18

Deciles of the distribution of time lags (in sec)

	Method	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	$MaxCov_W$	-10.00	-9.65	-5.21	0.10	0.20	0.25	0.30	0.30	0.40	5.81	10.00
CO_2	$MaxCov_{TS}$	-10.00	-0.30	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.60	10.00
	PWB	-9.30	-0.20	-0.05	0.10	0.20	0.25	0.30	0.35	0.40	0.50	9.10
	Method	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	$MaxCov_W$	-10.00	-8.25	-0.16	0.15	0.20	0.25	0.30	0.30	0.40	7.45	10.00
H_2O	$MaxCov_{TS}$	-10.00	-4.19	0.00	0.15	0.25	0.25	0.30	0.35	0.40	6.51	10.00
	PWB	-9.05	-0.25	0.00	0.15	0.20	0.25	0.30	0.30	0.35	0.45	9.55
	Method	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	$MaxCov_W$	-10.00	-9.70	-8.35	-5.03	1.00	1.15	1.30	1.70	7.35	9.46	10.00
N_2O	$MaxCov_{TS}$	-10.00	-10.00	-8.97	0.00	1.20	1.35	1.47	1.75	4.61	9.90	10.00
	PWB	-8.95	-0.10	1.05	1.20	1.25	1.30	1.40	1.50	1.65	1.96	7.75
	Method	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	$MaxCov_W$	-10.00	-10.00	-8.26	-5.13	-1.62	0.97	2.22	5.77	8.41	9.90	10.00
CH_4	$MaxCov_{TS}$	-10.00	-10.00	-9.12	-0.71	1.10	1.25	1.45	1.90	8.67	10.00	10.00
	PWB	-9.05	-0.45	1.00	1.15	1.20	1.30	1.35	1.45	1.60	1.90	8.20
(:	ير والمنتخبة الم											

(in gray the plausible range)

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

Domenico Vitale and ICOS-ETC Teams

Concluding Remarks

- The proposed procedure is completely data-driven
- Pre-Whitening avoids the risk of spurious correlations
- 3 Block-Bootstrapping enhances the accuracy of time lag detection and allows to quantify uncertainty
- ④ Compared with MaxCov approach, time lags detected by PWB are more stable, in particular for fluxes with low signal-to-noise ratio

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのぐ

References

- Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media, doi: 10.1007/978-94-007-2351-1, ISBN 978-94-007-2350-4
- Brockwell PJ & Davis RA (2002) Introduction to time series and forecasting. New York, NY: Springer New York, doi: 10.1007/978-3-319-29854-2, ISBN 978-3-319-29852-8
- Cryer JD & Chan KS (2008) Time series analysis: with applications in R (Vol. 2). New York: Springer, doi: 10.1007/978-0-387-75959-3, ISBN 9780387759593
- Langford B, Acton W, Ammann C, Valach A, Nemitz, E (2015) Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos Meas Tech, 8, 4197-4213, doi: 10.5194/amt-8-4197-2015
- Vitale D and Papale D (in press) On time lag detection between time series sampled by eddy covariance systems. In Proceedings of the GRASPA 2023 Conference, 10-11 July, Palermo, Italy, edited by Giada Adelfio and Antonino Abbruzzo, Università degli Studi di Palermo, ISBN 979-12-210-3389-2.

Domenico Vitale and ICOS-ETC Teams

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Thanks for your attention!

Domenico Vitale and ICOS-ETC Teams

Sac

イロト イポト イヨト イヨト 二日