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WADA’s ABP Program



WADA’s Mission

• The campaign to achieve doping-free sport is international and is headed by

the World Anti-doping Angency (WADA)

• WADA promotes, coordinates and monitors the fight against doping through

the World Anti-Doping Code – the core document harmonising anti-doping

policies with eight international standards, including:

• The Prohibited List

• Standard for Testing & Investigations

• Article 2.21: Use or Attempted Use by an Athlete of a Prohibited Substance or

Method may also be established by other reliable means that include

conclusions drawn from longitudinal Athlete Biological Passport (ABP) profiling

1World Anti-Doping Code 2021, page 21, Comment 9 [WADA, 2021]
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The ABP Program

• The fundamental principle of the ABP is to monitor over time athletes’

individual profiles – with respect to selected biomarkers

• Currently, ABP profiles are established according to two modules:

1. The Haematological Module (2009) – collects markers of blood doping

2. The Steroidal Module (2014) – collects markers of steroid doping

• Standardization and harmonization of ABP programs is achieved through the

use of ADAMS: an online database management tool for data entry, storage,

sharing, analyses and decision making, and reporting

• Doping violations are detected by noting deviations in each individual

biomarker from an athlete’s established levels (i.e., marker values outside

permissible limits), based on the ADAPTIVE Model [Sottas et al., 2007]
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ADAPTIVE Model



The State of the Art: Idea

Given a sequence of measurements of a biomarker Y on a single athlete, say

yt = (y1, y2, . . . , yt), the idea is to produce a predictive distribution for y = yt+1

p(y |y1, . . . , yt) =
∫
µ

∫
σ

p(y |µ, σ)π(µ, σ|y1, . . . , yt)dµdσ

and check whether the observed yt+1 falls between certain tolerance limits,

pre-specified according to α (e.g., 0.05)
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The State of the Art: Assumptions (1)

• Independence of intra-individual data (over time)

• Normality: Y1,Y2, . . . ,Yt ,Yt+1 i.i.d. ∼ N(µ, σ)

• (µ, σ) accounts for the inter-individual and intra-individual variation:

• a prior distribution π(µ, σ) can be elicited from a population of

“controls”: clean athletes or volunteers (non athletes)

• the tolerance limit(s) are then calibrated based on the individual observed

history

• Numerical integration is used for deriving the predictive distribution
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Statistical Issues (1): Does it look normal?

Empirical distribution: Hct

Hct values
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The State of the Art: Assumptions (2)

• One-dimensional analysis: biomarkers are analyzed separately, without

accounting for their interdependence and with a multiple use of the same prior

⇒ Independence between biomarkers
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Assumptions (2): Do They Look Independent?
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Biological Issues

1. In general, biomarkers do not provide orthogonal information, either due to

their intrinsic characteristics or because these are often derived quantities

2. Whereas in a control population biomarkers might be expected to provide

orthogonal information, little is known about their (simultaneous) alteration

due to the presence of some prohibited substances

Figure 1: Common markers of blood doping and their response to rHuEPO

treatment and blood transfusion. Source: Sottas et al. [2008]
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Notably...

Alteration can produce different shapes of potential interaction, well illustrated

by different types of copula
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Why Copulae?
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Copulae and Sklar’s Theorem [Sklar, 1959]

• Copulae model the dependence (inter-correlation) between random variables

• They provide a flexible way of representing the joint distribution of Y

Given a random vector Y = (Y1, . . . ,Yd) and a d-variate CDF F which

can depend on some parameter λ, Sklar [1959] showed that there always

exists a d-variate function C = Cθ : [0, 1]
d → [0, 1], such that:

F (y1, . . . , yd ;λ1, · · · , λd , θ) = Cθ(F1(y1;λ1), . . . ,Fd(yd ;λd)),

where Fj is the marginal CDF of Yj .

Therefore, in case that the multivariate distribution has a density f, and

this is available, it holds further that

f(y1, . . . , yd)︸ ︷︷ ︸
Multivariate density

= cθ(F1(y1), . . . ,Fd(yd))︸ ︷︷ ︸
Copula density

× f1(y1)× · · · × fd(yd)︸ ︷︷ ︸
Marginal univariate densities

12



Copulae and Sklar’s Theorem [Sklar, 1959]

• Copulae model the dependence (inter-correlation) between random variables

• They provide a flexible way of representing the joint distribution of Y

Given a random vector Y = (Y1, . . . ,Yd) and a d-variate CDF F which

can depend on some parameter λ, Sklar [1959] showed that there always

exists a d-variate function C = Cθ : [0, 1]
d → [0, 1], such that:

F (y1, . . . , yd ;λ1, · · · , λd , θ) = Cθ(F1(y1;λ1), . . . ,Fd(yd ;λd)),

where Fj is the marginal CDF of Yj .

Therefore, in case that the multivariate distribution has a density f, and

this is available, it holds further that

f(y1, . . . , yd)︸ ︷︷ ︸
Multivariate density

= cθ(F1(y1), . . . ,Fd(yd))︸ ︷︷ ︸
Copula density

× f1(y1)× · · · × fd(yd)︸ ︷︷ ︸
Marginal univariate densities

12



Our Proposal



Our Goal: In a Nutshell. . .

Given the current state-of-the-art, we aim to extend the ADAPTIVE model

building a more sophisticated model framework that:

• Goes beyond the Gaussianity assumption of the marginal biomarkers

• Accounts for multiple response variables simultaneously, while

describing/modeling:

• the inter-dependence (inter-correlation) among biomarkers

• the intra-individual temporal dependence

• athletes’ individual characteristics: fixed and random effects

• Replaces numerical integration with a safer and faster MonteCarlo

computation
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Our Ingredients: In a Nutshell. . .

• We focus on the haematological module: Hgb and Hct

• For illustrative purposes (at this stage), we use real data of a population of

controls (non-athletes):

(I) Model marginal pdfs ⇒ Location-Scale Student’s t-distribution2

(II) Derive a copula model ⇒ t-copula3

(III) Estimate a linear mixed model for each biomarker4:
yitr = βrXit + uir + ϵitr , i = 1, . . . , n; t = 1, . . . ,Tn; r = 1, 2

• βr = (β0,r , . . . , βp,r ): model’s coefficients related to the fixed effects Xit .

We consider p = 3 covariates: Age, Gender, Diastolic Blood Pressure

• uir : unobserved random effect of group i (i.e., the individual itself)

⇒ Prior elicitation

2See e.g., Jackman [2009]
3See e.g., [Demarta and McNeil, 2005]
4We use the Bayesian brms package [Bürkner, 2017] in R
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Prior Elicitation

For t = 1, posterior parameters’ draws define the prior (inter-individual

variations ), which is then used for deriving the predictive distribution:

p(y1|y0 = ∅) =
∫
µ

∫
σ

p(y1|µ,σ)π(µ,σ)dµdσ

15



Detection of Abnormal Values



From Intervals to HDR

(a) For univariate distributions, once we compute our predictive distribution

(updated at each time point t), a test result yt is considered abnormal if it falls

outside the (1− α)% percentile range–the tolerance interval, where α is the

predefined type-I error or false positive rate

(b) In the multivariate setting, the predictive distribution is multivariate. Thus,

given α, we look at identifying a Highest Density Region [HDR; Hyndman,

1996]. Vectors falling outside the HDR are considered abnormal

(a) Univariate HDR
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Results



HDR for t = 1 (prior predictive)
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Figure 2: Tolerance regions for a male individual with average characteristics
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HDR for t = 1 (prior predictive)
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Figure 3: Tolerance regions for a male individual with higher DBP
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HDR for t > 1 (posterior predictive)
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Conclusion and Future Work



Conclusions and Future work

• Indirect doping detection is become increasingly popular among forensic

scientists for assessing evidence of drug abuse

• The current approach rely on certain assumptions, including biomarkers

normality and intra-individual (time) independence, which may not be valid

• Furthermore, while multiple biomarkers are part of the longitudinal ABP

profiles, their relationship is neither modeled nor assessed

• Our work extends the current state-of-the-art, overcoming existing issues

Ongoing and future work:

• Account for skewness of the marginal distribution: Skewed Student’s t

• Account for covariates in the copula model: Conditional Copula

• Implementation with ADO data
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Thank you!

nina.deliu@uniroma1.it
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The ABP Program

• Since its introduction in 2009, the ABP has been established as a

complementary and essential pillar in the detection of doping in some specific

disciplines, e.g., the haematological (paralympic) ABP involves:

AQUATICS LONG DISTANCE, OPEN WATER

ATHLETICS LONG DISTANCE, MIDDLE DISTANCE

BIATHLON

CANOE/KAYAK LONG DISTANCE, MARATHON

CYCLING CYCLOCROSS, TRACK ENDURANCE

MOUNTAIN BIKE – CROSS COUNTRY, ROAD

ROLLER SPORT INLINE SPEED SKATING > 1000M

ROWING

SKATING SPEED SKATING > 1500M

SKIING CROSS-COUNTRY, NORDIC COMBINED

SKI MOUNTAINEERING

TRIATHLON

UNDERWATER SPORTS FINSWIMMING OPEN WATER



Sketch of the ADAPTIVE method

Modeling assumptions in Sottas et al. [2007] – steroid module:

• Y1,Y2, . . . ,Yt ,Yt+1 i.i.d. ∼ N(µ, σ)

• (µ, σ) accounts for the inter-individual and intra-individual variation:

• a prior distribution π(µ, σ) can be elicited from a population of

“controls”: clean athletes or volunteers (non athletes)

• individual tolerance levels are then calibrated based on

p(y |y1, . . . , yt) =
∫
µ

∫
σ

p(y |µ, σ)π(µ, σ|y1, . . . , yt)dµdσ

t = 1: these are based on the inter-individual variation only (prior predictive)

t > 1: intra-individual variation calibrates the limits (posterior predictive)

• the integral is calculated by numerical integration



Sketch of the ADAPTIVE method:

The model is subsequently extended to the hematologic module and population

heterogeneity is also taken into consideration [Sottas et al., 2008]5

5A forensic approach to the interpretation of blood doping markers. Law, Probability

and Risk (2008), 7.3: 191-210.



Application of the ADAPTIVE model: an example

Figure 5: Solid line: longitudinal Hgb data of a female elite athlete. Dashed

line: threshold limit values returned by the ADAPTIVE method. Dotted line:

traditional population-based limit (here 160 g/l). Source: Sottas et al. [2008]



Copulae: Definition

A function C : [0, 1]d → [0, 1] is a d-dimensional copula if it represents

a joint cumulative density function (CDF) of a d-dimensional random

vector Y = (Y1, . . . ,Yd) with uniform marginals [Nelsen, 2007].

Note that, assuming Y has continuous marginals, by applying the prob-

ability integral transform to each component, the random vector

(U1,U2, . . . ,Ud) = (F1(Y1),F2(Y2), . . . ,Fd(Yd))

has marginals that are uniformly distributed on the interval [0, 1]. The

copula of Y can thus be defined as the joint CDF of (U1,U2, . . . ,Ud):

C(u1, u2, . . . , ud) = Pr[U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud ].

• Copulae model the dependence (inter-correlation) between random variables

• They provide a flexible way of representing the joint distribution of Y
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Part I: Marginal distribution

Empirical and fitted distribution: Hct
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⇒ We choose a Location-Scale Student’s t-distribution6

6See e.g., Jackman [2009]



Part II: Modeling inter-dependence with copulae

• We choose our copula density among a number of families and selected “our

best” one according to the Akaike and Bayesian Information Criteria

• The best one is given by a t-copula [see e.g., Demarta and McNeil, 2005]

In a bi-variate setting, the bi-variate t-copula C t
ρ,ν(u1, u2) with ρ and ν

parameters, is given by:

C t
ρ,ν(u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst + t2

ν(1− ρ2)

)−(ν+2)/2

dsdt,

where t−1
ν (·) is the inverse bi-variate t-distribution with ν dof.



Part II: Modeling inter-dependence with copulae
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Part III: Linear mixed model

• We assume that yitr = βrXit + uir + ϵitr , i = 1, . . . , n; t = 1, . . . ,Tn; r = 1, 2

• βr = (β0,r , . . . , βp,r ) are the model’s coefficients related to the fixed

effects Xit . We consider three covariates (p = 3): Age, Gender, Diastolic

Blood Pressure (DBP)

• uir is the unobserved random effect of group i (i.e., the individual itself)

in relation to variable Yr

• We use the brms package [Bürkner, 2017] in R:

• It performs a full Bayesian inference

• It is based on Stan (MCMC: NUTS)

• The formula syntax is based on the syntax applied in the lme4 package



Linear mixed model: Predictive check
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Figure 6: Comparison between the empirical distribution of the observed

values and the predictive distribution under an LMM for Hct



Linear mixed model: Role of covariates

Figure 7: Conditional effects of the three covariates under an LMM for Hct



Prior Elicitation

⇒ Posterior parameters’ draws are used as prior (inter-individual variations )

for deriving the predictive distribution. Note that the predictive for t = 1:

p(y1|y0 = ∅) =
∫
µ

∫
σ

p(y1|µ,σ)π(µ,σ)dµdσ

=

∫
µa

∫
µb

∫
σa

∫
σb

pa(y1,a|µa, σa) pb(y1,b|µb, σb) cθ(Fa(y1,a),Fb(y1,b))

× π(µb, σb)π(µa, σa)dµadµbdσadσb
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