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WADA'’s ABP Program




WADA'’s Mission

e The campaign to achieve doping-free sport is international and is headed by
the World Anti-doping Angency (WADA)

e WADA promotes, coordinates and monitors the fight against doping through
the World Anti-Doping Code — the core document harmonising anti-doping
policies with eight international standards, including:

e The Prohibited List
e Standard for Testing & Investigations

World Anti-Doping Code 2021, page 21, Comment 9 [WADA, 2021]


https://www.wada-ama.org/sites/default/files/resources/files/2021_wada_code.pdf

WADA'’s Mission

e The campaign to achieve doping-free sport is international and is headed by
the World Anti-doping Angency (WADA)

e WADA promotes, coordinates and monitors the fight against doping through
the World Anti-Doping Code — the core document harmonising anti-doping
policies with eight international standards, including:

e The Prohibited List
e Standard for Testing & Investigations

e Article 2.2': Use or Attempted Use by an Athlete of a Prohibited Substance or
Method may also be established by other reliable means that include
conclusions drawn from longitudinal Athlete Biological Passport (ABP) profiling

World Anti-Doping Code 2021, page 21, Comment 9 [WADA, 2021]


https://www.wada-ama.org/sites/default/files/resources/files/2021_wada_code.pdf

The ABP Program

e The fundamental principle of the ABP is to monitor over time athletes’
individual profiles — with respect to selected biomarkers

e Currently, ABP profiles are established according to two modules:

1. The Haematological Module (2009) — collects markers of blood doping
2. The Steroidal Module (2014) — collects markers of steroid doping



The ABP Program

e The fundamental principle of the ABP is to monitor over time athletes’
individual profiles — with respect to selected biomarkers

e Currently, ABP profiles are established according to two modules:

1. The Haematological Module (2009) — collects markers of blood doping
2. The Steroidal Module (2014) — collects markers of steroid doping

e Standardization and harmonization of ABP programs is achieved through the
use of ADAMS: an online database management tool for data entry, storage,
sharing, analyses and decision making, and reporting

e Doping violations are detected by noting deviations in each individual
biomarker from an athlete’s established levels (i.e., marker values outside
permissible limits), based on the ADAPTIVE Model [Sottas et al., 2007]



ADAPTIVE Model




The State of the Art: Idea

Given a sequence of measurements of a biomarker Y on a single athlete, say
yt = (y1, Y2, ..., yt), the idea is to produce a predictive distribution for y = y;1

p(yly1, .-, ye) = / / plylp, o) m(p, olyr, ..., ye)dudo
JuJo

and check whether the observed y;.1 falls between certain tolerance limits,
pre-specified according to « (e.g., 0.05)
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The State of the Art: Assumptions (1)

Independence of intra-individual data (over time)

Normality: Y1, Yo, ..., Ys, Yesiidd. ~ N(p, o)

(11, 0) accounts for the inter-individual and intra-individual variation:

e a prior distribution 7(u, o) can be elicited from a population of
“controls”: clean athletes or volunteers (non athletes)

e the tolerance limit(s) are then calibrated based on the individual observed
history

e Numerical integration is used for deriving the predictive distribution
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Statistical Issues (1)

Empirical distribution: Hgb

Empirical distribution: Hct
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The State of the Art: Assumptions (2)

e One-dimensional analysis: biomarkers are analyzed separately, without
accounting for their interdependence and with a multiple use of the same prior

= Independence between biomarkers

Variable

Value



Assumptions (2): Do They Look Independent?
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Biological Issues

1. In general, biomarkers do not provide orthogonal information, either due to
their intrinsic characteristics or because these are often derived quantities

2. Whereas in a control population biomarkers might be expected to provide
orthogonal information, little is known about their (simultaneous) alteration
due to the presence of some prohibited substances

rHUEPO doping Blood transfusion
Name Short form  Number of
parameters Loading Maintenance Removal Infusion
phase phase

Hemoglobin Hgb 1 T T A T
Hematocrit Het 1 1+ 1 1 1T
Red Blood cells Rbe 1 T T 1 T
Reticulocytes Ret% 1 T 4 1T 1
OFT-scorc OrTS 2 - T 1 1T
Abnormal Blood Profile Score ABPS 2-12 T T L T

Figure 1: Common markers of blood doping and their response to rHUEPO
treatment and blood transfusion. Source: Sottas et al. [2008]



Alteration can produce different shapes of potential interaction, well illustrated
by different types of copula

Mormal copula: p= 0.8 teopula: p=08&v=2 Gumbel copula; 1= 0.8

Uy Uy Uy
Asymmetrical Gumbel:

Frank copula: 1= 0.8 Clayton copula: : = 0.8 =08 w=068&w:=10
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Why Copulae?

10 20 30 40 50

Hct

Could a Multivariate Normal distribution capture the (asymmetric)

dependency on the tails?
11



Copulae and Sklar’s Theorem [ ]

e Copulae model the dependence (inter-correlation) between random variables

e They provide a flexible way of representing the joint distribution of Y

Given a random vector Y = (Y1,..., Yy) and a d-variate CDF F which
can depend on some parameter ), Sklar [1959] showed that there always
exists a d-variate function C = Cy: [0,1]¢ — [0, 1], such that:

F(yi, ..., ydi A1, -+, Aa,0) = Co(Fi(yi; A1), - - -, Fa(ya; Aa)),

where F; is the marginal CDF of Y.

Therefore, in case that the multivariate distribution has a density f, and
this is available, it holds further that

f(y1, .- ya) = co(Fi(y1),-- -5 Fa(ya)) X filyr) x - x fa(ya)

Multivariate density Copula density Marginal univariate densities

12
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e They provide a flexible way of representing the joint distribution of Y

Given a random vector Y = (Y1,..., Yy) and a d-variate CDF F which
can depend on some parameter ), Sklar [1959] showed that there always
exists a d-variate function C = Cy: [0,1]¢ — [0, 1], such that:
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where F; is the marginal CDF of Y.

Therefore, in case that the multivariate distribution has a density f, and
this is available, it holds further that

fy1,- - ya) =co(Fi(»n), .-, Fa(ya)) x A(y1) x -+ x fa(ya)
Multivariate density Copula density Marginal univariate densities
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Our Proposal




Our Goal: In a Nutshell. ..

Given the current state-of-the-art, we aim to extend the ADAPTIVE model
building a more sophisticated model framework that:

e Goes beyond the Gaussianity assumption of the marginal biomarkers

e Accounts for multiple response variables simultaneously, while
describing/modeling:

e the inter-dependence (inter-correlation) among biomarkers
e the intra-individual temporal dependence
e athletes’ individual characteristics: fixed and random effects

e Replaces numerical integration with a safer and faster Monte Carlo
computation

13



Our Ingredients: In a Nutshell. ..

e We focus on the haematological module: Hgb and Hct

e For illustrative purposes (at this stage), we use real data of a population of
controls (non-athletes):

(I) Model marginal pdfs = Location-Scale Student’s t-distribution’
(1) Derive a copula model = t-copula®
(1) Estimate a linear mixed model for each biomarker*:
Yier = BrXie + uir +€er, i=1,...,mt=1,...,Tp;r=12
e Br=(Bo,,---,Bp,r): model's coefficients related to the fixed effects X;;.
We consider p = 3 covariates: Age, Gender, Diastolic Blood Pressure
e uj: unobserved random effect of group / (i.e., the individual itself)

= Prior elicitation

2See e.g., Jackman [2009]
3See e.g., [Demarta and McNeil, 2005]
#We use the Bayesian brms package [Biirkner, 2017] in R

14



Prior Elicitation
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For t = 1, posterior parameters’ draws define the prior (inter-individual
variations ), which is then used for deriving the predictive distribution:

p(yilyo = 0) = / / p(y1l, &) (i, o) dpdo

15



Detection of Abnormal Values




From Intervals to HDR

(a) For univariate distributions, once we compute our predictive distribution
(updated at each time point t), a test result y; is considered abnormal if it falls
outside the (1 — )% percentile range—the tolerance interval, where « is the
predefined type-| error or false positive rate

(b) In the multivariate setting, the predictive distribution is multivariate. Thus,
given «, we look at identifying a Highest Density Region [HDR; Hyndman,
1996]. Vectors falling outside the HDR are considered abnormal

(a) Univariate HDR (b) Bivariate HDR
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Results




HDR for t =1 (prior predictive

Lo
N HDR for the bivariate predictive (fixed and random effects)
—— Rectangular for the univariate predictives (fixed effects only)
Rectangular for the univariate predictives (no covariates)
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Figure 2: Tolerance regions for a male individual with average characteristics
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HDR for t =1 (prior predictive)

Lo
N HDR for the bivariate predictive (fixed and random effects)
—— Rectangular for the univariate predictives (fixed effects only)
Rectangular for the univariate predictives (no covariates)
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Figure 3: Tolerance regions for a male individual with higher DBP "



HDR for t > 1 (posterior predictive)
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Figure 4: Change of the tolerance region over time for an individual with
average characteristics
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Conclusion and Future Work




Conclusions and Future work

e Indirect doping detection is become increasingly popular among forensic
scientists for assessing evidence of drug abuse

e The current approach rely on certain assumptions, including biomarkers
normality and intra-individual (time) independence, which may not be valid

e Furthermore, while multiple biomarkers are part of the longitudinal ABP
profiles, their relationship is neither modeled nor assessed

e Our work extends the current state-of-the-art, overcoming existing issues

20
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s )

Ongoing and future work:
e Account for skewness of the marginal distribution: Skewed Student'’s t
e Account for covariates in the copula model: Conditional Copula

e Implementation with ADO data

20



Thank you!

nina.deliu@uniromal.it
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The ABP Program

e Since its introduction in 2009, the ABP has been established as a
complementary and essential pillar in the detection of doping in some specific
disciplines, e.g., the haematological (paralympic) ABP involves:

AQUATICS LONG DISTANCE, OPEN WATER

ATHLETICS LONG DISTANCE, MIDDLE DISTANCE

BIATHLON

CANOE/KAYAK LONG DISTANCE, MARATHON

CYCLING CYCLOCROSS, TRACK ENDURANCE
MOUNTAIN BIKE — CROSS COUNTRY, ROAD

ROLLER SPORT INLINE SPEED SKATING > 1000M

ROWING

SKATING SPEED SKATING > 1500M

SKIING CROSS-COUNTRY, NORDIC COMBINED

SKI MOUNTAINEERING

TRIATHLON

UNDERWATER SPORTS  FINSWIMMING OPEN WATER



h of the ADAPTIVE met

Modeling assumptions in Sottas et al. [2007] — steroid module:

[ ] Y17 YQ, 000y Yt, Yt+1 ii.d. ~ N(M7 O')
e (p,0) accounts for the inter-individual and intra-individual variation:

e a prior distribution 7(u, o) can be elicited from a population of
“controls”: clean athletes or volunteers (non athletes)
e individual tolerance levels are then calibrated based on

p(ylyi, .- y) = / /p(yllma)W(u,alyu----,yr)duda

JuJo

t = 1: these are based on the inter-individual variation only (prior predictive)
t > 1: intra-individual variation calibrates the limits (posterior predictive)

e the integral is calculated by numerical integration



Sketch of the ADAPTIVE method:

The model is subsequently extended to the hematologic module and population
heterogeneity is also taken into consideration [Sottas et al., 2008]°

Caucasian Sysmex
<610 . N

Asian inale endurance  Bayer Advia doped
610-1730 . 19-24

African female non-endur. Beckman Coulter  not doped
> 1730 >24

Oceanian Abbott Cell-Dyn

2 . blood

altitude | |ethnicity||gender|| age || sport analyser| doping

5A forensic approach to the interpretation of blood doping markers. Law, Probability
and Risk (2008), 7.3: 191-210.



Application of the ADAPTIVE model: an example
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Figure 5: Solid line: longitudinal Hgb data of a female elite athlete. Dashed
line: threshold limit values returned by the ADAPTIVE method. Dotted line:
traditional population-based limit (here 160 g/I). Source: Sottas et al. [2008]



Copulae: Definition

A function C: [0,1]* — [0,1] is a d-dimensional copula if it represents

a joint cumulative density function (CDF) of a d-dimensional random
vector Y = (Yi,..., Yy) with uniform marginals [Nelsen, 2007].

Note that, assuming Y has continuous marginals, by applying the prob-
ability integral transform to each component, the random vector

(Ur, Us, ..., Us) = (FL(Y1), Fa(Ya), ..., Fa(Ya))

has marginals that are uniformly distributed on the interval [0,1]. The
copula of Y can thus be defined as the joint CDF of (Ui, Us, ..., Uy):

Cur, u,...,ug) =Pr[Us <ui, Us <, Ug < gl
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e Copulae model the dependence (inter-correlation) between random variables

e They provide a flexible way of representing the joint distribution of Y



Part I: Marginal distribution

Density
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= We choose a Location-Scale Student’s t-distribution®

6See e.g., Jackman [2009]



Part 1l: Modeling inter-dependence with copulae

e We choose our copula density among a number of families and selected “our
best” one according to the Akaike and Bayesian Information Criteria

e The best one is given by a t-copula [see e.g., Demarta and McNeil, 2005]

In a bi-variate setting, the bi-variate t-copula C; ,(u1, t2) with p and v

parameters, is given by:

2 2\ —(v+2)/2
— 2pst + t
il oty ) dsdt,

& ( ) /f,/l(ul) /t,,l(uz) 1
S, wm) = 14+
P ' —oo —oo 277\/ 1-— P2 ( V(]‘ - p2)

where t,'(+) is the inverse bi-variate t-distribution with v dof.



Part 1l: Modeling inter-dependence with copulae
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Part Ill: Linear mixed model

e We assume that yiir = B, Xit + Uir +€itr, i=1,....mt=1...,Tpr=12

e B, = (Bor,---,Bp,) are the model's coefficients related to the fixed
effects Xjz. We consider three covariates (p = 3): Age, Gender, Diastolic
Blood Pressure (DBP)

e uj is the unobserved random effect of group i (i.e., the individual itself)
in relation to variable Y,
e We use the brms package [Biirkner, 2017] in R:
e |t performs a full Bayesian inference
e It is based on Stan (MCMC: NUTS)
e The formula syntax is based on the syntax applied in the 1me4 package



Linear mixed model: Predictive check

Normal LogNormal Location—scale Student's t

Yrep Yrep Yrep

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Figure 6: Comparison between the empirical distribution of the observed
values and the predictive distribution under an LMM for Hct



Linear mixed model: Role of covariates

.

Figure 7: Conditional effects of the three covariates under an LMM for Hct




Prior Elicitation
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= Posterior parameters’ draws are used as prior (inter-individual variations )
for deriving the predictive distribution. Note that the predictive for t = 1:

P(Y1|Y0:®)://P(Y1|M,0')7r(u,o')dudo-

:////pa(yl,alua,aa)pb(yl,b\ub,ab)CG(Fa(yl,a),Fb(yl,b))
pa S pp JSoa oy

X 7(poby 0b)T(lhay 02)dpadupdoadop
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