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Background

Data gap for SDG indicators on various hard-to-reach or stigmatised populations, such as

➢ Indigenous populations or ethnic minorities (e.g. the Rohingya in Myanmar )

➢ Refugees

➢ HIV’s

Due to several critical issues that are difficult to overcome in the current context of official statistics 
in different countries. 

It is very complex (and often impossible) to estimate the totals of variables related to those 
populations through models as in other situations.

Therefore, defining and implementing sampling strategies that can quickly improve this situation 
becomes necessary. 

The respondent-driven sampling (RDS) method, exploiting existing connections among individuals 
of the target population, can be a helpful sampling tool to survey these populations.



Examples of graphs describing the connections among the people in the population of interest

Graph A

Advice

Graph B

Friendship

Graph B

Who reports whom

Order: # Nodes (g) 21 21 21

Degree Sum (D) 220 146 40

Size: # Edges (L=D/2) 110 73 20

Maximum Size: g(g-1)/2 210 210 210

Density (2L/g(g-1) 0,524 0,348 0,095

Average arcs per node 10,5 7,0 1,9

Graph A Graph B
Graph C



The Respondent Driven Sampling (RDS) method (Heckathorn, 1997) is a network-based 

sampling technique (it includes the Snowball sampling). 

Since its establishment, RDS has been employed in countless investigations of such populations 

across many nations (White et al., 2015). 

It starts with a small sample of participants with which the researchers are familiar. 
Each participant identifiers their contacts in the target population, enrolling them in the study 
and increasing the sample size until the sample includes the desired number of respondents. 
And so on the sample evolves (adapts) with the progress of the interviews.

While the first selection is generally non-random, the selection of subsequent contacts is by 
random choice. 



Objective of this presentation

The RDS method suffers lack of an estimation methodology that is sufficiently robust concerning varying 
conditions under which it is applied. 

While it is advantageous when estimating mean and proportion values, the accuracy of the total estimates 
depends on several features, including the nature of the network connecting the individuals in the 
population (elenco piero).

Below, we address the estimation problem and propose three sample-design unbiased estimation 
methods by approaching the RDS method as a particular indirect sampling technique (Lavallé, 2007). 

The first method assumes a random sampling of the initial participants. 

The second method, which considers a non random sample selection of the initial participants, as in the 
original proposal, gives a unbiased estimation of the total number of people connected directly or 
indirectly to the initial selection.

The third method, leveraging the Generalized Capture-Recapture estimation approach (Lavallé and Rivest, 
2012), proposes an estimator that accounts for the no-coverage of the two above estimators.

Pierre Lavalle’, who joined this research activity, suggests that the two basic samples are non-random but 
with a different mechanism of undercoverage of the two respondent groups. 



RDS data collection

Consider the following graph representing the relationships connecting the units j, a, b, c, d, 1, 2, 3, 4, 5, 6
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The relationship between two participants can 
be direct or indirect. 
(For example, participant g is directly connected to participant a; 
while participant g is indirectly related to participant 1 via 
participant a)

Direct relations can be unidirectional or 
birectional (not oriented graph). 
(In the sense that if participant g knows participant a, 
participant a also knows participant g).



Data collection through RDS: an example of the mechanism

Example of a network sampling process
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At Step 0 we have an initial participant 𝐠. 

At Step 1 two participants are then randomly selecte from the 
contacts of those progressively included in the sample (b and c).

At Step 2 two participants are then randomly selected from 
those connected with b (a and 3) and with c (3 and 4) and 
included in the sample. 

Links observed in the sample.

Links not observed in the sample.

Up to and including step 2, participants g , b , c , a , 3 , 4 are kept 
in the sample.  Participants d, 1, 2, 5, 6 are not observed.

Stop rule. The RDS process stops either when in the selection 
process, we encounter only units already identified in the 
previous steps or at a predetermined step.
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The indirect sampling mechanism

In indirect sampling, we have a 𝑼𝑨 population of 𝑵𝑨 units  from which the research starts, and 
a 𝑼𝑩 population of 𝑵𝑩units that constitute the study's target population. 

The target parameter

𝒀 =෍
𝒌∈𝑼𝑩

𝒚𝒌.

may be viewed as the total

𝒀 =෍
𝒋∈𝑼𝑨

ഥ𝒚𝒋
𝑨 (1)

of the population 𝑼𝑨 of the variables ഥ𝒚𝒋
𝑨 where

ഥ𝒚𝒋
𝑨 =෍

𝑘∈𝑼𝑩

𝜆𝑗,𝑘

𝐿𝑘
𝐵 𝑦𝑘

being

𝐿𝑘
𝐵 =෍

𝑗∈𝑈𝐴
𝜆𝑗,𝑘

the total of direct links (𝜆𝑗,𝑘) of Unit 𝑘 ∈ 𝑈𝐵 with Unit 𝑗 ∈ 𝑈𝐴.



First estimator: random selection of the initial sample

In each step of the RDS mechanism, an unbiased 
estimator of the total Y can be obtained.

Let 𝑺𝟎 be the initial sample of 𝑛0 units selected to 
start the RDS search, and let 𝑺𝟎𝑻 be the subset of  𝑆0
including the participants belonging to the target 
population.
The total Y for the target people may be estimated 
with the standard Horvitz-Thompson estimator:

෠𝑌0 =෍
𝑗∈𝑆0𝑇

𝑦𝑗
1

𝜋𝑗

=෍
𝑘∈𝑆0𝑇

𝑦𝑘𝑤𝑘

where 𝜋𝑗 is the inclusion probability.

HT sample weight 

at step 0



First estimator: step 1

Sample 𝑆1 is formed by taking all the participants of sample 𝑆0𝑇 plus the set 𝑆1
+ including the 

participants randomly selected from the links of 𝑆0𝑇.
𝑺𝟏 = 𝑺𝟎𝑻 + 𝑺𝟏

+

𝑆1
+ is formed selecting, independently, ഥ𝑚 units (e.g. 2 or 3) for each unit in 𝑆0𝑇 from the 𝐿𝑗

𝐴 units 

that are their direct contacts. 

and 𝜏𝑘|𝑗∈𝑆0𝑇= ቐ
1 if 𝑗 = 𝑘
ഥ𝑚

𝐿𝑗
𝐴 otherwise

The unbiased estimator of  Y based on the units selected in 
𝑺𝟏 through the RDS process can be expressed in the standard 
weighted form:

෠𝑌1 =෍
𝑘∈𝑆1

𝑦𝑘𝑤𝑘 , where 𝑤𝑘 =෍
𝑗∈𝑆0𝑇

𝜆𝑗,𝑘

𝐿𝑘
𝐵

1

𝜋𝑗

1

𝜏𝑘|𝑗∈𝑆0𝑇
(3)



We form sample 𝑆2 by taking all the participants of sample 𝑆1, to which we add the sample 
𝑆2
+ including the participants randomly selected from the links of 𝑆1

+. 

and

𝜏𝑘|𝑗1∈𝑆1 = ൞

1 if 𝑗1 = 𝑘
ഥ𝑚

𝐿𝑗1
𝐴 otherwise

First estimator: step 2

𝑆0𝑇 𝑆1
+𝑆2=        ∪ ∪ 𝑆2

+

The unbiased estimator in 𝑺𝟐 is ෠𝑌2 = σ𝑘∈𝑆2
𝑦𝑘𝑤𝑘

where 𝑤𝑘 =෍
𝑗∈𝑆0𝑇

෍
𝑗1∈𝑆1

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵

𝜆𝑗1,𝑘

𝐿𝑘
𝐵

1

𝜋𝑗

1

𝜏𝑗|𝑗∈𝑆0𝑇

1

𝜏𝑘|𝑗1∈𝑆1



Continuing the above illustrated process recursively, in the 𝑟𝑡ℎ step, we form the sample 𝑆𝑟 by 
taking all the participants of sample 𝑆𝑟−1, to which we add the participants randomly selected from 
the links of 𝑆𝑟−1

+ . 

The conditional probability that unit 𝑘 is selected in sample 𝑆𝑟 , given 𝑗𝑟−1 ∈ 𝑆𝑟−1 is:

𝜏𝑘|𝑗𝑟−1∈𝑆𝑟−1 = ቐ
1 if 𝑘 = 𝑗𝑟−1

ഥ𝑚

𝐿𝑗1
𝐴 otherwise

First estimator: step r

The unbiased estimator of  Y  in 𝑺𝒓 is: 

෠𝑌𝑟 =෍
𝑘∈𝑆𝑟

𝑦𝑘𝑤𝑘

where

𝑤𝑘 =෍
𝑗∈𝑆0𝑇

…෍
𝑗𝑟−1∈𝑆𝑟−1

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵 ×⋯×

𝜆𝑗𝑟−1,𝑘

𝐿𝑘
𝐵

1

𝜋𝑗

1

𝜏𝑗1|𝑆0
×⋯×

1

𝜏𝑗𝑟−1|𝑆𝑟−2

1

𝜏𝑘|𝑆𝑟−1



The sampling design should maximize the number of observed individuals of the target 
population in the sample 𝑆0 by adopting proper choices. 

The sample design should tend to oversample:

o areas where the researchers have some a priori information of a high concentration of the 
target population; 

o on auxiliary variables predictive of membership in the target population.

Design of sample 𝑆0



Second estimator: non-random selection of the initial sample

The 𝑆0 sample is selected in a non-random mode: 

𝑆0 coincides with 𝑆0𝑇.

In this case, we can only obtain a correct estimate of the set of 
units directly or indirectly connected with the participants of 𝑆0. 

We denote this total as 𝑌𝑆0→

In the example we are considering 𝑌𝑆0→ as the sum of the 

variable y of the units g, a, b, c, d, 1, 2, 5, 6. (excluding 3 and 4).

o If there are clusters that include people of the target 
population unconnected with those in 𝑆0, we have 𝑌𝑆0→ < 𝑌. 

o If the participants of 𝑆0 fall into all disjointed clusters in which 
the population of interest is organised, 𝑌𝑆0→ coincides with 

the total 𝑌.



Example of three groups of separate units

𝑌𝑆0→ < 𝑌 if 𝑆0 does not cover all the following three groups



Let 𝑟 be the step where the RDS process stops. 

The unbiased estimator ෠𝑌 𝑆0 𝑟 of 𝑌 𝑆0 can be obtained as:

෠𝑌 𝑆0 𝑟 =෍
𝑘∈𝑆𝑟

𝑦𝑘𝑤 𝑆0 𝑘

where 𝑤 𝑆0 𝑘 = σ𝑗∈𝑆0
…σ𝑗𝑟−1∈𝑆𝑟−1

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵 ×⋯×

𝜆𝑗𝑟−1,𝑘

𝐿𝑘
𝐵

1

𝜏𝑗1|𝑗∈𝑆0
×⋯×

1

𝜏𝑗𝑟−1|𝑗𝑟−2∈𝑆𝑟−2

1

𝜏𝑘|𝑗𝑟−1∈𝑆𝑟−1

Note: The estimator ෠𝑌 𝑆0 𝑟 is unbiased for 𝑌𝑆0→ if 𝑟 is greater than the maximum of the shortest paths 

between any pair of nodes in each cluster of the units of 𝑆0.



Third estimator for dealing under-coverage

Even if the 𝑆0 sample is randomly selected, the first estimator ෠𝑌𝑟 may be biased: 

under-coverage may occur if respondents do not trust the interviewers and tend to hide their status. 

Likewise, if the 𝑆0 sample is non-randomly chosen, the second estimator can be affected by under-
coverage if total 𝑌𝑆0→ does not coincide with 𝑌.

The Generalised Capture-Recature estimator (CReG) (Lavallé and Rivest, 2012), allows us to overcome 
both of the above mentioned forms of under coverage leveraging on a capture-recapture perspective

෠𝑌𝐶𝑅𝑒𝐺 =
෠𝑌𝑟 × ෠𝑌 𝑆0 𝑟

෠𝑌𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

where

෠𝑌𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 =෍
𝑘∈𝑆𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

𝑤𝑘 𝑤(𝑆0)𝑘 𝑦𝑘

where 𝑆𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 is the sample that includes the common units in the random and non-random samples.

Pierre Lavalle‘ suggests that the two basic samples are non-random but with a different mechanism of 

under-coverage of the two respondent groups. 



Conclusions

• The disaggregation of data for SDG indicators on hard-to-reach populations presents 
several critical issues that are difficult to overcome in the current context of official 
statistics in different countries. 

• Therefore, defining and implementing a sampling strategy that can quickly improve 
this situation becomes necessary. It is helpful to consider sampling designs which 
maximise the number of observed individuals of the target population.

• The respondent-driven sampling (RDS) method, based on existing connections 
among individuals of the target population, can be a helpful sampling tool to survey 
these populations. 



Conclusions

In this presentation, we reviewed the RDS method and proposed three sampling 
unbiased estimators, overcoming the defects of the traditional RDS technique.

What we have presented here represents ongoing research, the initial results of which 
are encouraging. 

The research team is currently running experiments on simulated data and the 
empirical results will be presented in the final version of our paper.
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Demonstrations

Demonstration of Formula 1

𝑌 =෍
𝑗∈𝑈𝐴

ത𝑦𝑗
𝐴 =෍

𝑗∈𝑈𝐴
෍

𝑘∈𝑈𝐵

𝜆𝑗,𝑘

𝐿𝑘
𝐵 𝑦𝑘 =෍

𝑘∈𝑈𝐵
𝑦𝑘෍

𝑗∈𝑈𝐴

𝜆𝑗,𝑘

𝐿𝑘
𝐵 = ෍

𝑘∈𝑈𝐵
𝑦𝑘 .

Demonstration of Formula 2

If unit 𝑘 ∈ 𝑆0, it is included in 𝑆1 with certainty.

If unit 𝑘 ≠ 𝑗 ∉ 𝑆0, it is selected in 𝑆1 independently from every unit 𝑗 ∈ 𝑆0 with conditional 

probability

𝜏𝑗|𝑘∈𝑆0 =
ഥ𝑚

𝐿𝑗
𝐴 .



Demonstrations

Demonstration of Formula 3

𝐸 ෠𝑌1 =෍
𝑗∈𝑈𝐴

1

𝜋𝑗
𝐸 𝛿𝑗(𝑆0) ෍

𝑘∈𝑈
𝑦𝑘

𝜆𝑗,𝑘

𝐿𝑘
𝐵

1

𝜏𝑘|𝑗∈𝑆0
𝐸 |𝛿𝑘(𝑆1) 𝑗 ∈ 𝑆0

=෍
𝑗∈𝑈𝐴

𝜋𝑗

𝜋𝑗
෍

𝑘∈𝑈
𝑦𝑘

𝜆𝑗,𝑘

𝐿𝑘
𝐵

1

𝜏𝑘|𝑗∈𝑆0
𝜏𝑘|𝑗∈𝑆0

=෍
𝑗∈𝑈𝐴

෍
𝑘∈𝑈

𝑦𝑘
𝜆𝑗,𝑘

𝐿𝑘
𝐵

where 

𝛿𝑘 𝐴 = 1 if unit k belongs to set A and 𝛿𝑘 𝐴 =0.



Demonstrations

Demonstration of Formula 4.

𝐸 ෠𝑌2 =෍
𝑗∈𝑈𝐴

෍
𝑗1∈𝑈

𝐴
෍

𝑘∈𝑈𝐵
𝑦𝑘

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵

𝜆𝑗1,𝑘

𝐿𝑘
𝐵

𝐸 𝛿𝑗(𝑆0)

𝜋𝑗

𝐸 𝛿𝑗1( |𝑆1 𝑗 ∈ 𝑆0)

𝜏𝑗1|𝑗∈𝑆0

𝐸 𝛿𝑘( |𝑆2 𝑗1 ∈ 𝑆1
𝜏𝑘|𝑗1∈𝑆1

=෍
𝑗∈𝑈𝐴

෍
𝑗1∈𝑈

𝐴
෍

𝑘∈𝑈𝐵
𝑦𝑘

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵

𝜆𝑗1,𝑘

𝐿𝑘
𝐵

𝜋𝑗

𝜋𝑗

𝜏𝑗1|𝑗∈𝑆0
𝜏𝑗1|𝑗∈𝑆0

𝜏𝑘|𝑗1∈𝑆1
𝜏𝑘|𝑗1∈𝑆1

=෍
𝑗∈𝑈𝐴

෍
𝑗1∈𝑈

𝐴
෍

𝑘∈𝑈𝐵
𝑦𝑘

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵

𝜆𝑗1,𝑘

𝐿𝑘
𝐵

=෍
𝑘∈𝑈𝐵

𝑦𝑘෍
𝑗∈𝑈𝐴

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵 ෍

𝑗1∈𝑈
𝐴

𝜆𝑗1,𝑘

𝐿𝑘
𝐵

=෍
𝑘∈𝑈𝐵

𝑦𝑘෍
𝑗∈𝑈𝐴

𝜆𝑗,𝑗1
𝐿𝑗1
𝐵 1 =෍

𝑘∈𝑈
𝑦𝑘 1 × 1

=෍
𝑘∈𝑈𝐵

𝑦𝑘


