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Introduction

Initial aim of the research:

to estimate the individual propensity to work off-the-books and the
earnings deriving from these undeclared activities.
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Methodological issues

earnings may be represented by a semi-continuos variable,
which can only be observed for individuals who declared to be
working off the books;

the variable representing the condition of working or not
working in the black economy may be misclassified, i.e., one
may answer no, while s/he actually worked off-the-book. We
expect the other type of misclassification, that is, one may
declare to have worked off-the-book while s/he haven’t, to be
very unlikely;

earnings may be under-declared;

data are severely unbalanced, that is the number of events
(individuals declaring to work off-the-book) is significantly
smaller than the number of nonevents: the percentage of
cases in the survey is only 5%.
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Solution to the first issue

Two-part model:

Part one: P(W T
i > 0|Zi ) = P(Y T

i = 1|Zi ) = πi = Φ(Ziβ)
(1)

Part two: log(W T
i ) = Xiθ + ui , ui∼N(0;σ2u) (2)

where W is a semi-continuous random variable.

It is useful for phenomena with positive values and a very high
frequency at zero.
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The two-part model has the following mixture p.d.f.:

f
(
W T

i

)
= (1− πi )g(W T

i |Y T
i = 0,Xi ) + πig(W T

i |Y T
i = 1,Xi )

(3)

where πi = P(Y T
i = 1) may be explained by a set of covariates, so

depending on the corresponding vector of parameters, say β, and
g(W T

i |Y T
, Xi ) depends on another vector of parameters, say θ.

Note that, when Y T
i = 0, the density of W T collapses to a unit

probability mass.
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Measurement error issue

Do we need to worry for measurement error?

In many applied works, variables are flawed with measurement
error. This could easily happen, for example, during an interview if
the respondent misunderstands the question or the interviewer
simply checks the wrong box. If the misclassification is on the
variable that governs whether the response variable is zero or
positive, some truly positive values are recorded as zeros and some
truly zeros are recorded as positive.

Whereas there is a vast literature on measurement error on the
right side (independent variables), less attention was given on the
left side (dependent variables). Exceptions are the influential works
of Berkson (JASA, 1950) and Fuller (Wiley, 1988) for continuous
variables and of Hausman et al. (Journal of Econometrics 1998)
for binary variables.
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Measurement error on the binary dependent variables

Hausman et al.:
Let Y O be the fallible/error-prone binary variable and yO be the
observed value. The misclassification model, which specifies the
behavior of Y O given the true unobserved value Y T = yT , is
characterized by the misclassification probability:
α1 = P(Y O = 0|Y T = 1) (the probability of false negative) and
α0 = P(Y O = 1|Y T = 0). (the probability of false positive). Since
Y T is random, if we specify the distribution of Y O |Y T , it follows
that:

P(Y O
i = 1) = (1−α1)πi +α0(1−πi ) = πi (1−α0−α1) +α0 (4)
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Measurement error on the positive part of the continuous
dependent variables

Fuller:
When we deal with a continuous variables W , the classical error
model is:

WO
i = W T

i · ξi , ξi ∼ logN(µ, σ2ξ ) (5)

where µ is usually null and W T (or its logarithm) can be specified
as a linear function of some predictors.
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Rare events

Rare events data, or imbalanced data, have attracted a lot of
attentions in machine learning and other quantitative fields.
A common practice in analyzing rare events data is to over-sample
(replicate) the events, which has a higher computational cost.
On the other side, Wang (2020) suggested to keep fixed the ones
and to consider a subsample of zeros: he proved that
under-sampling a small proportion of the nonevents, the resulting
under-sampled estimator may have identical asymptotic
distribution to the full data MLE distribution.
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Our proposal

When we admit the possibility of measurement error for W and Y ,
we can no longer refer only to the p.d.f. of the true W as in (3),
but we need to consider the observability of W and of Y :

P
(
Y O
i = 1|Zi

)
= α0 + (1− α0 − α1)P

(
Y T
i |Zi

)
(6)

log(WO
i |W T

i > 0) = Xiθ + (ui + εi ) (7)

where Xi and Zi are the row vectors containing all information for
the i-th individual.
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The first part of the model (i.e. equation 6) is consistent with
equation (4).
For the second part, coherently with (2), we assume a normal
distribution for ε, εi ∼ N(µi , σ

2
ε ), and consequently for the global

error component ui + εi = vi ∼ N(µi , σ
2
v ).

Furthermore, we assume that ui and εi are uncorrelated.
It’s important to stress that the above specification extends the
classical measurement error model, allowing each unit to have a
different expected value µi .
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Referring to the whole sample space, the marginal density of
log(WO

i ) can be so defined:

f
(

log(WO
i )
)

=
4∑

j=1

ψji · gj
(

log(WO
i |Y O

i ,Y
T
i ,Xi )

)
(8)

where the weights corresponds to the following joint probabilities:

ψ1i = P(Y O
i = 0,Y T

i = 0) = (1− α0) · (1− πi )
ψ2i = P(Y O

i = 1,Y T
i = 1) = (1− α1) · πi

ψ3i = P(Y O
i = 1,Y T

i = 0) = α0 · (1− πi ) (9)

ψ4i = P(Y O
i = 0,Y T

i = 1) = α1 · πi

and the conditional values of Y O
i and Y T

i i n gj are the same than
in ψj .
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In other words, the measurement error may act with a different
intensity for each population unit.
We model the expected value as a function of individual
characteristics: µi = h(X ∗

i γ), with X ∗
i row vector.

For the sake of simplicity, we just consider a linear function
µi = X ∗

i γ.
Admitting a varying µi implies that the conditional densities g2
and g3 must be conditioned to X ∗

i . Since log(WO
i ) and µi are

both specified as linear functions of the predictors, to avoid any
problem of identifiability of the parameters θ and γ, we assume
that the sets of covariates X and X ∗ do not overlap.
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Simulation results

Coherently with Hausman et al. (1998), we assumed the following
generating model for the error-free dependent variables:

Pr
(
Y T |Z1,Z2,Z3

)
= Φ (β0 + β1Z1 + β2Z2 + β3Z3) (10)

logW T = θ0 + θ1X1 + θ2X2 + u (11)

where Φ(·) is the c.d.f of a standard normal. The covariates are
generated as follows: Z1 is log-normal with zero mean and unit
variance, X2 and Z2 are binomial with p = 1/3, X1 and Z3 are
uniformly distributed over the unit interval.

Moreover, we considered different under sampling proportions and,
for each of them, we investigated the sensitivity of the estimates.
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To generate the observed (i.e. error-prone) binary variable, Y O , we
defined the misclassification matrix based on the probabilities α0

and α1 and we sample accordingly.
Finally, the mismeasured continuous part is generated as in
equation 7 allowing µi = γX4, with
X4 ∼ Mult4(p1 = 0.01; p2 = 0.06; p3 = 0.33, p4 = 0.60).
Across simulations we fixed: θT = (10, 0.8,−0.5),
βT = (−1, 0.2, 1.5,−0.6), σ2u = 2, σ2ε = 3 and γ = −0.2, while for
the misclassification probabilities we considered the following three
scenarios:
1) α0 = α1 = 0.05, 2) α0 = 0.05;α1 = 0.20; 3) α0 = α1 = 0.20.

We repeated each simulation scenario 100 times with samples of
size n = 5, 000.
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The main results can be summarize as follows:
For the binary part of the model, even in the case of a small
amount of misclassification (α0 = α1 = 0.05), ordinary probit
produces estimates that are biased by 14-22%. As expected, the
problem worsens as the amount of misclassification grows.

Conversely, the proposed model provides more accurate estimates,
in terms of mean squared error and relative bias, for all levels of
misclassification.

For the continuous part, the results of the proposed model are very
encouraging since the estimates of all parameters are trustworthy.

These results hold for all simulations scenarios (all tables are
available upon request).
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Although satisfactory, the estimates of γ and σ2v showed some
variability in the accuracy.

Finally, as to the undersampling, there is a sort of trade-off
between estimator behavior and the cross validation:
reducing the proportion of zeros, and consequently the sample size,
relative bias and MSE worsen,
at the same time, however, the percentage of correctly predicted
events increases.
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