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ABCCop

Bayesian inference

Outline

Main goal:
The implementation of Approximate Semiparametric Inference
from a Bayesian perspective.

Ingredients:

⋄ Approximate Bayesian Computation

⋄ Empirical Likelihood

⋄ Copulas.

⋄ Gaussian Processes
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ABCCop

Bayesian inference

Inference on dependencies

One of the goals of a statistical analysis is often to understand
how different phenomena are related and how to describe or
to model such relations.

Even in the simplest cases, eye impression can be misleading
. . .

Linear correlation (ρ) is not able to describe, rank correlation
(τ)does a better job
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Bayesian inference

Some examples
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Figure: A bivariate Gaussian: ρ = .505, τ = .342
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Bayesian inference

Some examples
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Figure: Different marginals: ρ = .361, τ = .342
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Bayesian inference

Some examples
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Figure: Uniform marginals: ρ = .496, τ = .342
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Bayesian inference

Some examples
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Figure: Gamma marginals: ρ = .441, τ = .342
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Bayesian inference

Conditional dependence

First message: Understanding the relation among X and Y is
complex, and often depends on the way they are measured Things

become even more difficult when

the number of variables increase

the intensity of the relation varies according to a set of other
variables

In other words, in the presence of a Dynamic Regime of
Dependence
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Bayesian inference

Motivating Application 1: Visual Acuity Data

Visual acuity is measured on a group of 2810 children together with age

As children grow, their sight changes

Bivariate data zi = (xi ,yi ) = (right visual acuity, left visual acuity) and a
covariate wi = age from each child (unit) indexed by i = 1, . . . ,n
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Bayesian inference

Motivating Examples 2: Blood Pressure

It is known that there is a dependence between blood pressure
(BP) and body mass index (BMI). What if the dependence varies
with subject’s age?

. . . another example in Nina Deliu’s talk tomorrow morning
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Bayesian inference

Copulas

Copula functions are used to model dependence between
continuous random variables.

(Sklar,’59) If Y1, Y2 are continuous r.v.’s with distribution
functions (df) F1,F2, there exists a unique copula function
C : [0,1]× [0,1]→ [0,1], such that

F12(t,s) = Pr(Y1 ≤ t,Y2 ≤ s) = C (F1(t),F2(s)).

C is a distribution function on [0,1]2 with uniform margins.

The copula bridges the marginal distributions with the joint
distribution.
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Bayesian inference

Conditional Copulas

The conditional copula of (Y1,Y2)|X = x is the conditional
joint distribution function of U = F1|X (Y1|x) and
V = F2|X (Y2|x) given X = x (Patton, Int’l Econ. Rev. 2006).

Consider a random sample (xi ,y1i ,y2i );1≤ i ≤ n and suppose
F1|X and F2|X are the unknown marginal conditional cdf’s.
The conditional copula model assumes

(Y1i ,Y2i )|X = xi ∼ C (F (Y1i |xi ),F (Y2i |xi )|θ(xi )).

Marginals and copula are conditional on the same variables.
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Bayesian inference

A statistical model

The general expression of the likelihood of a single observation is
then

f (x ,y |z) = g1(x |z ,θx)g2(y |z ,θy )cZ (G1(x |z ,θx),G2(y |z ,θy );ψ)

g1, g2 are much easier than cZ (·, ·)
Here, our quantity of interest is mainly cZ (·, ·) or a functional
T of it, maybe τ (cZ (·, ·))
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An Approximate Bayesian alternative

An Approximate Bayesian alternative

ABC is a computational technique that only requires being able to
sample from the likelihood p(·|ω) This technique stemmed from
population genetics models, about 20 years ago (Marjoram, 2003,
PNAS).

A stands for approximate (in several ways . . . )

B stands for Bayesian

C stands for computation (it produces a posterior sample)
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An Approximate Bayesian alternative

An Approximate Bayesian alternative

Basic ABC algorithm. Given a sample x ,
1 Generate θ ∗ from the prior π(·)
2 Generate another dataset z ∼ f (z |θ ∗) where f is our working

likelihood

3 If ρ (η(z),η(x))< ε accept θ ∗, otherwise return to step 1.

ρ is a distance; η is a (non)-sufficient statistic.
The vector of accepted values of θ ∗’s can be considered as -
approximately - generated from π(θ | x).
This is the basic algorithm. Many improvements can be done, from
several perspectives
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An Approximate Bayesian alternative

Empirical likelihood (EL)

Dataset x : n independent replicates x = (x1, . . . ,xn) of a r.v.
X ∼ F .
Induce a pseudo-model in terms of generalized moment conditions,
i.e.

EF (h(X ,ϕ)) = 0,

where h(·) is a known function, and ϕ an unknown parameter.
[Example for the mean of F : h(X ,ϕ) = Xi −ϕ . . . ]

The resulting empirical likelihood is

LEL(ϕ|x) =maxp
n

∏
i=1

pi ,

for all p such that 0≤ pi ≤ 1, ∑
n
i=1 pi = 1, and

n

∑
i=1

h(xi ,ϕ)pi = 0.

Owen, 1988, BKA, & Empirical Likelihood, 2001
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An Approximate Bayesian alternative

BETEL

Bayesian Exponentially Tilted Empirical Likelihood [?]1

As before, but

LBEL(ϕ;x) = max
(p1,...,pn)

n

∑
i=1

(−pi logpi ) ,

under constraints

0≤ pi ≤ 1, and ∑
n
i=1 pi = 1

∑
n
i=1 h(xi ,φ)pi = 0.

1BETEL has an interesting Bayesian nonparametric interpretation, since it
has the well-known property of the Dirichlet prior used in the Bayesian
bootstrap of providing posteriors that assign probability one to distributions
supported on the sample
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An Approximate Bayesian alternative

BCel : Bayesian Computation with Empirical Likelihood

Mengersen et al. (PNAS, 2013) use the EL approximation to the
true “unknown” likelihood within a Bayesian framework:

1 Pretend (BET)EL is an exact likelihood

2 for i = 1, . . .B
generate ϕ(i) from the prior distribution π(·)
set the weight wi = (BET )EL(ϕ(i);x)

end for

3 resample w/r from (ϕ(i),wi ), i = 1, . . . ,B.

Performance evaluated through the so-called effective sample size

ESS = 1

/ B

∑
b=1

{
wb

/ B

∑
r=1

wr

}
( . . . the larger the better . . . )
More advanced algorithms can be used.
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An Approximate Bayesian alternative

Mixing the ingredients

Grazian and L. (2017) propose a semi-parametric Bayesian
approach for estimating a functional ψ of a multivariate
distribution by using the following ingredients:

Copula representation of a multivariate CDF (Sklar, 1959)

(BET) Empirical Likelihood of ψ

Approximate Bayesian Computation method BCEL

19 / 23



ABCCop

An Approximate Bayesian alternative

Different approaches

Here we discuss three different ways of tackling the conditional
problem

Gaussian Processes (Levi and Craiu, CSDA, 2018)

Conditional BETEL

B-splines (Stander, L. et al. 2020, Stat in Med.)
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Gaussian Processes

1. Gaussian processes

To encourage normality, we consider the Fisher transform

Z (x) = log
1−ρ(x)

1+ρ(x)

and consider its sample version

W (x) = log
1− ρ̂(x)

1+ ρ̂(x)

where ρ̂(x) is the conditional Spearman’s ρ restricted to
observations at covariate level x
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Gaussian Processes

1. Gaussian processes

Assume Z (x) is - a priori - a GP

Z (x)∼ G P
(
g(x)Tβ,σ2K (x ,x ′;ξ )

)
.

Tthe location parameter is E[Z (x)] = g(x)Tβ, where
g(x) = (g1(x), . . . ,gq(x))

T is a set of known functions, x ∈ Rp and
β ∈ Rq.
Common choices for the basis function g(x) are

0

(1,x)

(1,x,x2)
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Gaussian Processes

Additional noise

In practice, W (x) is a noisy observation of the signal Z (x).

It is possible to explicitly model the noise through some parametric
assumption. For instance, the case of compensating errors can be
modelled through a Gaussian distribution

W (xℓ) = Z (xℓ)+ εℓ ℓ= 1, . . . ,k

where εℓ ∼ N (0,τ2
ℓ ), independently, with τ2

ℓ = τ2/nℓ;
then, one gets

W (xℓ)∼ N
(
g(xℓ)

Tβ,σ2+ τ
2
ℓ

)
.
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