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Preliminary considerations

Preliminary considerations

@ Optimal reinsurance-investment problem is one of the core research
problems in actuarial science. Purchasing reinsurance can protect
insurers against adverse claim experience.

o There exists a large literature on this topic, under different criteria
(e.g., minimizing ruin probability or maximizing expected utility). See
for instance, among others, [Schmidli 2007], [Liang et al. IME 2014],
[Zhang et al. IME 2009], [Zhu et al. IME 2015].

@ Most of the literature is based on the classical Cramér-Lundberg
model or its diffusion approximation.

Claudia Ceci (Uniromal) (Optimal reinsurance problems for jump-clusters 3/21



Preliminary considerations

@ Classical models assume constant claims arrival intensity .

o This assumption is often far from realistic. For instance:
- Car’s insurance claims may be influenced by weather conditions;
- Claims associated with natural catastrophes are in general affected
by environmental stochastic factors;
- Claims induced by terrorist attacks are influenced by social and
political conditions;

o In many cases, these stochastic factors are not directly observable by
insurance companies. This leads to discuss the problem under partial
information.
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Preliminary considerations

Main ingredients

e JUMP CLUSTERING: in catastrophic situations the jumps in the
claims arrival process can exhibit clustering feature. We combine Cox
with shot-noise intensity and Hawkes processes (with exponential
kernel) and we get a shot-noise self-exciting counting process

o PARTIAL INFORMATION: insurer has partial information about
claims arrival intensity.
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reinsurance problem under partial information, Insurance Math.
Econom. 95

Contagion model:

@ Dassios A., Zhao, H. (2011): A dynamic contagion process, Adv. Appl.
Prob. 43.

o Cao., Landriault D., Li, B. (2020): Optimal reinsurance-investment
strategy for a dynamic contagion claim model. Insurance Math.
Econom. 93.
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2. THE MATHEMATICAL MODEL

The Mathematical Model

On (Q, %, P;F) with T > 0 the maturity of a reinsurance contract, introduce the
cumulative claim process C={C;, t€ [0, T1}:

N@»
t

CG=) ZV , teloT
=l K~

claims size

where the claims arrival process N'!) is a point process with intensity:

N®
G ) 1 ~at-T1%) 2
Ai=B+Ao—Pe* + Z Z() )+Ze Z;)
v j=1 ~—~
Int—exc.jump Ext—exc.jump
CLUSTERING CLUSTERING

N®@ Poisson process with intensity p > 0; {Z,(ll)}nzl ({Zf)}nzl) i.i.d.R" -valued rv with
distribution function FO (F®). N® (ZWy 1 and {Z?} =1 are independent.
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3. MODEL CONSTRUCTION

Model Construction

The key idea is based on equivalent change probability measure on (Q, %;F).
Under Q:

o NW and N® are Poisson processes with intensity 1 and p > 0, respectively;

@ the integer valued random measures m'? (dt,dz), i=1,2

m?(dt,d2) = )" 8 40, (dt,d21 0
n=1 n *n n

<oo}”
Under Q: mD(dt,dz), i=1,2, are independent Poisson measures with
compensator measures given respectively by

viDQdr,dz) = FV(dz)dr, vPQdr,d2) = pF? (d2)dt.

@ By Girsanov Theorem under P the (P,[F)-predictable projections measures of
the random measure m®(dt,dz), i=1,2 are given by:

vdr,dz) = A~ FY(d2dr, v?(dr,dz) = pF? (d2)dt. )

In particular, N is a point process with (P, F)-predictable intensity
{Assero,17-
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4. THE REINSURANCE PROBLEM

Reinsurance Contract

The insurer selects a reinsurance strategy {u} (0,77, SO that the aggregate losses
covered by the insurer are

Ngl) t p+oo
ci=y o= [ [ o@umasda, reo,
j=1 J 0 Jo

(the remaining C; — C} will be undertaken by the reinsurer). We assume:

@ The retention function ®(z, ) continuous in u€ U,
e UcR", with R denoting the compactification of R;

@ There exists at least two points uy and uys € U such that

0<P(z,up) <Pz, ) = P(z,uny) =2, VYuelU

(up=maximal reinsurance, uy=null reinsurance).
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4. THE REINSURANCE PROBLEM

Different type of contracts

a) Proportional reinsurance: the insurer transfers a percentage 1 — u of any future
loss to the reinsurer, so U = [0,1] and ®(z, u) = uz.

b) Excess-of-loss: the reinsurer covers all the losses exceeding a threshold u, hence
U=10,+oc0] and ®(z,u) = uA z.

¢) Limited excess of loss reinsurance: the reinsurer covers the losses exceeding a
threshold u;, up to a maximum level u, > u;, so that the maximum loss is limited
to (up — up) on the reinsurer’s side. In this case: ®(z, ) =z—(z—u1)" +(z—u2)*, so
that U ={(u, up) : u; =0, up € [1g, +oo]} and u = (u;, up). Here

upr = (up,1, un2) = (0, +00) and uy can be any point on the line u; = up.

d) Limited excess of loss with fixed reinsurance coverage: u, = u; + 3, f > 0. Here
U = [0, +00], uy = +oo and uys = 0 corresponds to the maximum reinsurance
coverage .
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4. THE REINSURANCE PROBLEM

The surplus and the reinsurance premium

Under {1} rejo, 17, the surplus process R” of the primary insurer follows:
dR} = (c;—q})dt—dC}', Rj=RoeR"
with H—predictable processes
@ ¢; insurance premium rate;
@ the reinsurance premium rate, g (w) = q(t, 0, u) is such that

e q(t,w,u) and W continuous in ue€ U,

e ((t,w, uy) =0 null protection is not expensive,
o ((t,w, up) > q(t,w, u), the maximum reinsurance is the most expensive.

[E[fqutuMdt] <00, [E[fOTctdt] < oo
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4. THE REINSURANCE PROBLEM

The wealth and the problem to solve

The insurance company invests its surplus in a risk-free asset with interest rate
r> 0, so that the wealth is X} = Ry € R*

+oo
dx} = dR"+ rX}*dt = (¢, — q) dt — f ®(z, uy) m (dt, dz) + rX" dt
0

Under Full Information mV (dt, dz) has (P,F)-compensator measure A,- FV (dz)ds;
Under Partial Information: mV(dt, dz) has (P,H)-compensator measure
7~ (M FV(dz)dp), where H=FC and 7,(A) = E[A,|.#].

The company aims at solving (with n > 0 the insurer’s risk aversion)

supE[1—e 7] =1 inf E[e 7]
UewY ueuU

The Admissible strategies are all the U-valued, [F-(or H)-predictable processes.
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5. HJB-approach under full information

HJB-approach under full information

@ Assuming c¢; = c(t,A) and g} (¢, us, Ay);
o (X}, A;) is a Markov process;

@ Value function
V(x4 = inf Erea[e™], (6,5,4)€10,T) x Rx (0, +o00),
ue

where the notation E; 5 [-] stands for the conditional expectation
given X' =xand 1, = 1.

@ We can prove that V(t,x,1) = g nxe " @(t,A) and if ¢ is sufficiently
smooth it solves the Hamilton-Jacobi-Bellman (HJB) equation.
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5. HJB-approach under full information

The Hamilton-Jacobi-Bellman (HJB) equation:

+00
—(M)+ alB- /1) (M)+f [p(t, A+ 2) = (1, V] pF?(d2)
@)
e n(p(r,;ocmn inf W'(1,0)=0,
uel0,

with final condition ¢(T,1) =1, A € (0, +o0), where the function ¥¥ is given by

(T—1)

+00
\P“(r,/l)=ne”T*”<p(t,;L)q()L,u)+f [e"‘b(zv”’e Pt A+0(2) -, )| AFY (d2).
0

Difficulties:
@ Regularity of the value function;

@ Verification approach requires to prove existence and uniqueness of the
solution Eq.(2) (partial integro-differential equation with an embedded
optimization);

@ Two alternative approaches: direct computations or a BSDEs-approach (in
collaboration with Alessandra Cretarola, Universitd di Perugia).
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5. BSDE-approach

BSDE-approach

We define, for 2 (¢t, u) = {ite U :Us=Uga.s., S<t=< T}, the Snell envelope

W/ = essinf E e T | th],
TEU (t,10)
ot 3> _ . . YU T
so that if X := e”"" X" is the discounted wealth, then W/ = ¢ "¢V,
. . T (i
where V is the value process: V; = essinfzes, E[e ne” (X=X | 7, | Moreover,

¢ UN T
Vt= e"X’ € WtN.

Proposition (Bellman’s Optimality Principle)

i) {WH te[0, T} in a (P,H)-submartingaleN ue U;

ii) {Wt"*, t€ [0, T} in a (P,H)-martingale if and only if u* € % is an
optimal control.
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5. BSDE-approach

Theorem (Main Result)

(WN,0W"™) € £2 x 22 is the unique solution the following BSDE

N T [eo wnN ~ (1) T T N oWV
Ww; :f—ftfo 0 (@m (ds,dz)—ft esssupf(s, W;"',0," (), us) ds,

ue¥
with terminal condition & = e " , where
- N )
[ WtN,G)}/V (), up) = —Wﬁner(T D) g

+00 N WN 1(T—1) ) 1
- f (WY +0}" (21[e® 2@ 1|z, (WFY (dz).
0

Moreover, the process u* € U which satisfies

Fee, w¥,0M" (),u}) = esssupf(t, WN,01" (), u)  Vie[0,T]
ue

is an optimal control.

3

4)

®)
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5. BSDE-approach

It follows directly by an existence result of a solution to the BSDE (3) and a
verification result, which imply that any solution to the BSDE (3) coincides with

the process (WN,0W™). O

Theorem (Existence result)
There exists a unique solution to the BSDE (3).

Proof. We prove that the driver satisfies a stochastic Lipschitz condition. We adapt
to our framework Theorem 3.5 in Papapantoleon, Possamai and Saplaouras (EJP,
2018).

Theorem (Verification Theorem)

Let (Y,0V) e .5{2 x P2 be a solution to the BSDE (3) and let u* € % be the
maximizer of f(t,Y:,0Y(),u,). Then Y = WN and

v,=e ¢y, vrelo,T),

and u* is an optimal control.
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5. SPECIFIC REINSURANCE AGREEMENTS

Proportional reinsurance, ®(z, u) = zu

@ Expected Value Principle: g% = (1 + 0pE[ZV )7~ (D) (1 — uy)
@ The optimal control u* is obtained “explicitly” and
0 ifOr<0F(w)
u; (@) =41 if0p> 0N (w)
u(t, Wgy(w),G)WN(-)(w)) otherwise,
The stochastic thresholds are:

N N
wN eV (9 HT-z wi oW

- - (2)
F_ 1 o0 't I3 — 1 N_ 1 o0 't I3 (1)
Qt = 520 ﬁ) N ze e FC )(dz)—l, 0: =5z fo WZIY zF'Y (dz)-1.

and au(t, WN,0"" () € (0,1) solves the following equation:
9y

_ er('l‘—t)z(l—u)
ze

+oo N 1@
(1+HR)[E[Z‘”]=f W46, @ FY(dz).

) whN
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5. SPECIFIC REINSURANCE AGREEMENTS

Limited Excess-of-Loss Reinsurance with fixed maximum
reinsurance coverage 5 >0

@ According to the expected value principle
ur+f
q?=u+9mnrmgf (1-FY(2)dz
Uy

@ The optimal control u* is given by

@) = ifOr < 0k (w)
t a u(t, thy(a)),@;/VN(-)(w)) otherwise,
where
ol - B WN+G)W (2) _ner(T—t)zF(l)(dz) _1
0; = F(D(ﬁ)
and u(t, W, @W (1)) € (0, +00) solves the following equation:
utp W + 0" AT
(1 +9R)(F(D(u+ ﬁ) —F(U(u)) =/ [—t(z)e_ne (T-1)( )F(l)(dz),

u wh
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