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Preliminary considerations

Preliminary considerations

Optimal reinsurance-investment problem is one of the core research
problems in actuarial science. Purchasing reinsurance can protect
insurers against adverse claim experience.

There exists a large literature on this topic, under different criteria
(e.g., minimizing ruin probability or maximizing expected utility). See
for instance, among others, [Schmidli 2007], [Liang et al. IME 2014],
[Zhang et al. IME 2009], [Zhu et al. IME 2015].

Most of the literature is based on the classical Cramér-Lundberg
model or its diffusion approximation.
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Preliminary considerations

Classical models assume constant claims arrival intensity .

This assumption is often far from realistic. For instance:
- Car’s insurance claims may be influenced by weather conditions;
- Claims associated with natural catastrophes are in general affected
by environmental stochastic factors;
- Claims induced by terrorist attacks are influenced by social and
political conditions;

In many cases, these stochastic factors are not directly observable by
insurance companies. This leads to discuss the problem under partial
information.
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Preliminary considerations

Main ingredients

JUMP CLUSTERING: in catastrophic situations the jumps in the
claims arrival process can exhibit clustering feature. We combine Cox
with shot-noise intensity and Hawkes processes (with exponential
kernel) and we get a shot-noise self-exciting counting process

PARTIAL INFORMATION: insurer has partial information about
claims arrival intensity.
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1. RELATED LITERATURE

Related literature

Partial Information:

Liang, Z., Bayraktar, E. (2014): Optimal reinsurance and investment
with unobservable claim size and intensity. Insurance Math. Econom.
55.

Brachetta, M., Ceci, C. (2020): A BSDE-based approach for the optimal
reinsurance problem under partial information, Insurance Math.
Econom. 95

Contagion model:

Dassios A. , Zhao, H. (2011): A dynamic contagion process, Adv. Appl.
Prob. 43.

Cao Y., Landriault D., Li, B. (2020): Optimal reinsurance-investment
strategy for a dynamic contagion claim model. Insurance Math.
Econom. 93.
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2. THE MATHEMATICAL MODEL

The Mathematical Model

On (Ω,F ,P;F) with T > 0 the maturity of a reinsurance contract, introduce the
cumulative claim process C = {Ct , t ∈ [0,T ]}:

Ct =
N (1)

t∑
j=1

Z (1)
j︸︷︷︸

claims size

, t ∈ [0,T ]

where the claims arrival process N (1) is a point process with intensity:

λt =β+ (λ0 −β)e−αt +
N (1)

t∑
j=1

e
−α(t−T (1)

j )
`( Z (1)

j︸︷︷︸
Int−exc.jump

)

︸ ︷︷ ︸
CLUSTERING

+
N (2)

t∑
j=1

e
−α(t−T (2)

j )
Z (2)

j︸︷︷︸
Ext−exc.jump︸ ︷︷ ︸

CLUSTERING

Assumption

N (2) Poisson process with intensity ρ > 0; {Z (1)
n }n≥1 ({Z (2)

n }n≥1) i.i.d.R+-valued rv with
distribution function F (1) (F (2)). N (2), {Z (1)

n }n≥1 and {Z (2)
n }n≥1 are independent.
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3. MODEL CONSTRUCTION

Model Construction

The key idea is based on equivalent change probability measure on (Ω,F ;F).
Under Q:

N (1) and N (2) are Poisson processes with intensity 1 and ρ > 0, respectively;

the integer valued random measures m(i)(dt,dz), i = 1,2

m(i)(dt,dz) = ∑
n≥1

δ(T (i)
n ,Z(i)

n )(dt,dz)11{T (i)
n <∞}.

Under Q: m(i)(dt,dz), i = 1,2, are independent Poisson measures with
compensator measures given respectively by

ν(1),Q(dt,dz) = F (1)(dz)dt, ν(2),Q(dt,dz) = ρF (2)(dz)dt.

By Girsanov Theorem under P the (P,F)-predictable projections measures of
the random measure m(i)(dt,dz), i = 1,2 are given by:

ν(1)(dt,dz) =λt−F (1)(dz)dt, ν(2)(dt,dz) = ρF (2)(dz)dt. (1)

In particular, N (1) is a point process with (P,F)-predictable intensity
{λs− }s∈[0,T ].

Claudia Ceci (Uniroma1) Optimal reinsurance problems for jump-clusters models 8 / 21



4. THE REINSURANCE PROBLEM

Reinsurance Contract

The insurer selects a reinsurance strategy {ut }t∈[0,T ], so that the aggregate losses
covered by the insurer are

Cu
t =

N (1)
t∑

j=1
Φ(Z (1)

j ,uT (1)
j

) =
∫ t

0

∫ +∞

0
Φ(z,us)m(1)(ds,dz), t ∈ [0,T ],

(the remaining Ct −Cu
t will be undertaken by the reinsurer). We assume:

The retention functionΦ(z,u) continuous in u ∈ U ;

U ⊆Rn
, with R denoting the compactification of R;

There exists at least two points uN and uM ∈ U such that

0 ≤Φ(z,uM ) ≤Φ(z,u) ≤Φ(z,uN ) = z, ∀u ∈ U

(uM =maximal reinsurance, uN =null reinsurance).
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4. THE REINSURANCE PROBLEM

Different type of contracts

a) Proportional reinsurance: the insurer transfers a percentage 1−u of any future
loss to the reinsurer, so U = [0,1] andΦ(z,u) = uz.

b) Excess-of-loss: the reinsurer covers all the losses exceeding a threshold u, hence
U = [0,+∞] andΦ(z,u) = u∧z.

c) Limited excess of loss reinsurance: the reinsurer covers the losses exceeding a
threshold u1, up to a maximum level u2 > u1, so that the maximum loss is limited
to (u2 −u1) on the reinsurer’s side. In this case: Φ(z,u) = z− (z−u1)++ (z−u2)+, so
that U = {(u1,u2) : u1 ≥ 0,u2 ∈ [u1,+∞]} and u = (u1,u2). Here
uM = (uM ,1,uM ,2) = (0,+∞) and uN can be any point on the line u1 = u2.

d) Limited excess of loss with fixed reinsurance coverage: u2 = u1 +β, β> 0. Here
U = [0,+∞], uN =+∞ and uM = 0 corresponds to the maximum reinsurance
coverage β.
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4. THE REINSURANCE PROBLEM

The surplus and the reinsurance premium

Under {ut }t∈[0,T ], the surplus process Ru of the primary insurer follows:

dRu
t = (

ct −qu
t

)
dt −dCu

t , Ru
0 = R0 ∈R+

with H−predictable processes

ct insurance premium rate;

the reinsurance premium rate, qu
t (ω) = q(t,ω,u) is such that

q(t,ω,u) and ∂q(t,ω,u)
∂u continuous in u ∈ U ,

q(t,ω,uN ) = 0 null protection is not expensive,
q(t,ω,uM ) > q(t,ω,u), the maximum reinsurance is the most expensive.

Assumption

E
[∫ T

0 quM
t dt

]
<∞, E

[∫ T
0 ct dt

]
<∞
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4. THE REINSURANCE PROBLEM

The wealth and the problem to solve

The insurance company invests its surplus in a risk-free asset with interest rate
r > 0, so that the wealth is X u

0 = R0 ∈R+

dX u
t = dRu

t + rX u
t dt = (

ct −qu
t

)
dt −

∫ +∞

0
Φ(z,ut )m(1)(dt,dz)+ rX u

t dt

Under Full Information m(1)(dt,dz) has (P,F)-compensator measure λt−F (1)(dz)dt;
Under Partial Information: m(1)(dt,dz) has (P,H)-compensator measure
πt− (λ)F (1)(dz)dt), where H= FC and πt (λ) = E[λt |Ht ].

The company aims at solving (with η> 0 the insurer’s risk aversion)

sup
u∈U

E
[
1−e−ηX u

T
]= 1− inf

u∈U
E
[
e−ηX u

T
]

The Admissible strategies are all the U-valued, F-(or H)-predictable processes.
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5. HJB-approach under full information

HJB-approach under full information

Assuming ct = c(t,λt) and qu
t (t,ut ,λt);

(X u
t ,λt) is a Markov process;

Value function

V (t,x,λ) = inf
u∈U

Et,x,λ
[
e−ηX u

T
]
, (t,x,λ) ∈ [0,T)×R× (0,+∞),

where the notation Et,x,λ[·] stands for the conditional expectation
given X u

t = x and λt =λ.

We can prove that V (t,x,λ) = e−ηxer(T−t)
ϕ(t,λ) and if ϕ is sufficiently

smooth it solves the Hamilton-Jacobi-Bellman (HJB) equation.
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5. HJB-approach under full information

The Hamilton-Jacobi-Bellman (HJB) equation:

∂ϕ

∂t
(t,λ)+α(β−λ)

∂ϕ

∂λ
(t,λ)+

∫ +∞

0

[
ϕ(t,λ+z)−ϕ(t,λ)

]
ρF (2)(dz)

−ηer(T−t)ϕ(t,λ)c(λ)+ inf
u∈[0,1]

Ψu(t,λ) = 0,
(2)

with final condition ϕ(T ,λ) = 1, λ ∈ (0,+∞), where the functionΨu is given by

Ψu(t,λ) = ηer(T−t)ϕ(t,λ)q(λ,u)+
∫ +∞

0

[
eηΦ(z,u)er(T−t)

ϕ(t,λ+`(z))−ϕ(t,λ)
]
λF (1)(dz).

Difficulties:

Regularity of the value function;

Verification approach requires to prove existence and uniqueness of the
solution Eq.(2) (partial integro-differential equation with an embedded
optimization);

Two alternative approaches: direct computations or a BSDEs-approach (in
collaboration with Alessandra Cretarola, Universitá di Perugia).
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5. BSDE-approach

BSDE-approach

We define, for U (t,u) =
{

ū ∈U : ūs = us a.s., s ≤ t ≤ T
}

, the Snell envelope

W u
t = essinf

ū∈U (t,u)
E
[

e−ηX ū
T |Ht

]
,

so that if X̂ u
t := e−rtX u

t is the discounted wealth, then W u
t = e−ηX̂ u

t erT
Vt ,

where V is the value process: Vt = essinfū∈Ut E
[

e−ηerT (X̂ ū
T −X̂ ū

t ) |Ht

]
Moreover,

Vt = eηX̂t
uN erT

Wt
N .

Proposition (Bellman’s Optimality Principle)

i) {W u
t , t ∈ [0,T ]} in a (P,H)-submartingale ∀u ∈U ;

ii) {W u∗
t , t ∈ [0,T ]} in a (P,H)-martingale if and only if u∗ ∈U is an

optimal control.
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5. BSDE-approach

Theorem (Main Result)

(W N ,ΘW N
) ∈L 2 ×L̂ 2 is the unique solution the following BSDE

W N
t = ξ−

∫ T

t

∫ +∞

0
ΘW N

s (z) m̃(1)(ds,dz)−
∫ T

t
esssup

u∈U
f̃ (s,W N

s ,ΘW N

s (·),us)ds,

(3)
with terminal condition ξ= e−ηX N

T , where

f̃ (t,W N
t ,ΘW N

t (·),ut) =−W N
t−ηer(T−t)qu

t

−
∫ +∞

0
[W N

t−+ΘW N

t (z)]
[
e−ηer(T−t)(z−Φ(z,ut )) −1

]
πt−(λ)F (1)(dz). (4)

Moreover, the process u∗ ∈U which satisfies

f̃ (t,W N
t ,ΘW N

t (·),u∗
t ) = esssup

u∈U
f̃ (t,W N

t ,ΘW N

t (·),ut) ∀t ∈ [0,T ] (5)

is an optimal control.
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5. BSDE-approach

Proof.

It follows directly by an existence result of a solution to the BSDE (3) and a
verification result, which imply that any solution to the BSDE (3) coincides with

the process (W N ,ΘW N
).

Theorem (Existence result)

There exists a unique solution to the BSDE (3).

Proof. We prove that the driver satisfies a stochastic Lipschitz condition. We adapt
to our framework Theorem 3.5 in Papapantoleon, Possamai and Saplaouras (EJP,
2018).

Theorem (Verification Theorem)

Let (Y ,ΘY ) ∈L 2 ×L̂ 2 be a solution to the BSDE (3) and let u∗ ∈U be the
maximizer of f̃ (t,Yt ,ΘY

t (·),ut ). Then Y = W N and

Vt = eηX̄
uN
t erT

Yt ∀t ∈ [0,T ],

and u∗ is an optimal control.
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5. SPECIFIC REINSURANCE AGREEMENTS

Proportional reinsurance,Φ(z,u) = zu

Expected Value Principle: qu
t = (1+θR)E[Z (1)]πt− (λ)(1−ut )

The optimal control u∗ is obtained “explicitly” and

u∗
t (ω) =


0 if θR < θF

t (ω)

1 if θR > θN
t (ω)

ū(t,W N
t− (ω),ΘW N

t (·)(ω)) otherwise,

The stochastic thresholds are:

θF
t = 1

E[Z(1)]

∫ ∞
0

W N
t−+ΘW N

t (z)

W N
t−

ze−ηer(T−t)z
F (1)(dz)−1, θN

t = 1
E[Z(1)]

∫ ∞
0

W N
t−+ΘW N

t (z)

W N
t−

zF (1)(dz)−1.

and ū(t,W N
t− ,ΘW N

t (·)) ∈ (0,1) solves the following equation:

(1+θR)E[Z (1)] =
∫ +∞

0

W N
t− +ΘW N

t (z)

W N
t−

ze−ηer(T−t)z(1−u)
F (1)(dz).
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5. SPECIFIC REINSURANCE AGREEMENTS

Limited Excess-of-Loss Reinsurance with fixed maximum
reinsurance coverage β> 0

According to the expected value principle

qu
t = (1+θR)πt− (λ)

∫ ut+β

ut

(1−F (1)(z))dz.

The optimal control u∗ is given by

u∗
t (ω) =

{
0 if θR < θL

t (ω)

ū(t,W N
t− (ω),ΘW N

t (·)(ω)) otherwise,

where

θL
t = 1

F (1)(β)

∫ β

0

W N
t− +ΘW N

t (z)

W N
t−

e−ηer(T−t)z
F (1)(dz)−1.

and ū(t,W N
t− ,ΘW N

t (·)) ∈ (0,+∞) solves the following equation:

(1+θR)
(
F (1)(u+β)−F (1)(u)

)= ∫ u+β

u

W N
t− +ΘW N

t (z)

W N
t−

e−ηer(T−t)(z−u)
F (1)(dz).
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5. SPECIFIC REINSURANCE AGREEMENTS

THANKS FOR YOUR KIND
ATTENTION!
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