# Pension fund with longevity risk: an optimal portfolio insurance approach

#### Marina Di Giacinto<sup>1</sup>, <u>Daniele Mancinelli<sup>2</sup></u>, Mario Marino<sup>3</sup>, Imma Oliva<sup>2</sup>

<sup>1</sup>Dept. of Economics and Law, Università degli Studi di Cassino e del Lazio Meridionale,
 <sup>2</sup>Dept. of Methods and Models for Economics, Territory and Finance, Sapienza University of Rome,
 <sup>3</sup>Dept. of Economics, Business, Mathematics and Statistics, University of Trieste.

#### XIII GIORNATA DELLA RICERCA MEMOTEF

June 28, 2023 Rome, Italy

## Introduction and aim

- Pension funds offer **social insurance** by providing income to the fund members once retired, aiming to **maintain living standards**.
- Pension fund activity is affected by two main risks: the **investment risk**, concerning the **accumulation phase**, and the **longevity risk**, concerning the **decumulation phase**.
- Is it possible to guarantee a minimum retirement saving at the retirement date by linking the investment strategy (asset allocation during the accumulation period) to the fund member's lifetime (longevity paths during the decumulation period)?

#### **Research goal**

Design an optimal asset allocation strategy for guaranteeing a minimum retirement saving, taking into account the longevity risk.

< ロ > < 同 > < 回 > < 回 > < 回 >

#### The state variables

(

On a continuously open and frictionless financial market over the time set [0, T), the economic framework is described by two **state variables**:

**(**) the **instantaneous risk-free rate** r(t) whose dynamics is given by a **CIR process**:

$$dr(t) = k \left(\theta - r(t)\right) dt + \sigma_r \sqrt{r(t)} dZ_r(t), \quad r(0) = r_0 > 0, \quad t \in [0, T],$$
(1)

the mortality intensity of the workers, which are assumed to be homogeneous by cohort evolves according to

$$d\lambda(t) = \alpha_{\lambda} \left(\beta_{\lambda}(t) - \lambda(t)\right) dt + \sigma_{\lambda} \sqrt{\lambda(t)} dZ_{\lambda}(t), \quad \lambda(0) = \phi + \frac{1}{b} e^{\frac{\iota + t - l}{b}}, \quad t \in [0, T], \quad (2)$$

where

$$eta_\lambda(t) = \phi + rac{1}{b} \left( rac{1}{lpha_\lambda} rac{1}{b} + 1 
ight) e^{rac{\iota + t - l}{b}} \, .$$

э.

イロト イボト イヨト イヨト

#### Labour income and contribution rate processes

• We assume that the member's **labour income** L(t) is stochastic and its evolution can be expressed in terms of the following SDE

$$\frac{dL(t)}{L(t)} = \zeta dt + \sigma_{L,r} \sqrt{r(t)} \left( dZ_r(t) + \xi_r \sqrt{r(t)} dt \right) + \sigma_L \left( dZ_S(t) + \xi_S dt \right), \quad t \in [0, T], \quad (3)$$

$$L(0) = I_0 > 0.$$

• The total contribution C(t) is given by

$$C(t) = \gamma^* L(t), \quad t \in [0, T].$$
(4)

where  $\gamma^{\star} \in (0,1)$  is set such that the fairness condition is satisfied at t=0

$$\mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{\omega'} \left(C(s)\mathbb{1}_{s<\tau} - b(s)\mathbb{1}_{s\geq\tau}\right) e^{-\int_{0}^{s} r(u)du} \frac{p(s)}{p(0)} ds\right] = 0$$
(5)

## The financial market

In the financial market, the DC pension scheme's manager can allocate the wealth of the pension account into

• a money market account (cash) whose dynamics is given by

$$dS_0(t) = r(t)S_0(t)dt, \quad S_0 = s_0, \quad t \in [0, T],$$
(6)

• a risky asset whose price evolves according to the following SDE

$$\frac{dS(t)}{S(t)} = r(t)dt + \sigma_{S,r}\sqrt{r(t)} \left( dZ_r(t) + \xi_r \sqrt{r(t)} dt \right) + \sigma_S \left( dZ_S(t) + \xi_S dt \right), \quad t \in [0, T], \quad (7)$$

$$S(0) = s > 0.$$

• A rolling ZCB  $P_{K}(t)$  with a constant time to maturity K, whose price dynamics is given by

$$\frac{dP_{\kappa}(t)}{P_{\kappa}(t)} = r(t)dt - \sigma_{\kappa}\sqrt{r(t)}\left(dZ_{r}(t) + \xi_{r}\sqrt{r(t)}dt\right), \quad t \in [0, T].$$
(8)

э

## The financial market (II)

• The third risky asset in the financial market is a zero-coupon longevity bond, which is primarily used to hedge **longevity risk**.

#### Definition 1 (Zero coupon longevity bond)

A zero-coupon longevity bond is a contract paying a face amount equal to the survival probability of the reference population from time 0 until a fixed maturity time s. Its **arbitrage-free price** at time t for a fixed maturity s is given by

$$L_B(t,s) = \mathbb{E}_t^{\mathbb{Q}} \left[ e^{-\int_t^s r(u)du} \frac{p(s)}{p(0)} \right] = e^{-\int_0^t \lambda(u)du} \mathbb{E}_t^{\mathbb{Q}} \left[ e^{-\int_t^s r(u) + \lambda(u)du} \right], \quad 0 \le t < s \le T.$$
(9)

• In the same manner of the zero coupon bond, we consider a rolling longevity bond  $L_{\kappa_1}(t)$  with a constant time to maturity  $K_1$ , whose dynamics is given by

$$\frac{dL_{\kappa_1}(t)}{L_{\kappa_1}(t)} = r(t)dt - \sigma_{\kappa_1}\sqrt{r(t)}\left(dZ_r(t) + \xi_r\sqrt{r(t)}dt\right) - \sigma_{L\kappa_1}\sqrt{\lambda(t)}\left(dZ_\lambda(t) + \xi_\lambda\sqrt{\lambda(t)}dt\right).$$
(10)

3

・ロ・ ・ 日・ ・ ヨ・

## The investment strategy during the accumulation phase

• Generally, the aim of the pension fund's manager is to reach a **minimum guarantee** to purchase a **lifetime annuity** for the surviving member at retirement time *T*. Its value at time *T* is given by

$$G(T) = \mathbb{E}^{\mathbb{Q}}\left[\int_{T}^{\omega'} b(s)e^{-\int_{T}^{s} r(u)du} \frac{p(s)}{p(T)} ds \middle| \mathcal{F}_{T}\right].$$
(11)

- One of the most popular strategy with downside protection is the so-called **CPPI strategy** which works as follows:
  - **Solution** Floor: dF(t) = r(t)F(t)dt,  $F(0) = \mathcal{G} \exp\left\{\int_0^T r(u)du\right\}$ ,  $t \in [0, T]$ ,
  - **2** Cushion:  $C(t) = W(t) F(t), t \in [0, T],$
  - **Solution** Exposure:  $E(t) = m \cdot C(t)$ ,  $t \in [0, T]$ , where *m* is the multiplier.
- We propose a generalized version of CPPI strategy, the so-called **purpose-oriented proportional PI strategy** which presents the following features:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うくぐ

 $\bigcirc$  the floor is directly linked to the target annuity value at retirement T,

$$G(t) = \mathbb{E}\left[G(T)e^{-\int_t^T r(u)du} \middle| \mathcal{F}_t\right] = \int_T^{\omega'} b(s)L_B(t,s)ds, \quad t \in [0,T],$$
(12)

We stock index is replaced by a synthetic index consisting of a linear combination of three different kinds of underlying:

$$I(t) = (1 - \alpha_1(t) - \alpha_2(t)) S(t) + \alpha_1(t) P_{\kappa}(t) + \alpha_1(t) L_{\kappa_1}(t), \quad t \in [0, T].$$
(13)

• The pension fund aims to maximize the expected utility of the terminal surplus at time T:

$$\begin{cases} \text{maximize } \mathbb{E}^{t,w,r,\lambda} \left[ \frac{\left( W^{\nu}(T) - G(T) \right)^{1-\delta}}{1-\delta} \right] \text{ over } \nu = \{ \alpha_1(u), \alpha_2(u), m(u) \}_{u \in [t,T]} \in \mathcal{A}(t,w,r,\lambda), \\ \text{such that } W^{\nu}(T) \ge G(T), \end{cases}$$

$$(14)$$

where the dynamics of the wealth process W(t) is given by

$$dW(t) = W(t)\frac{dS_0(t)}{S_0(t)} + m(t)\left(W(t) - G(t)\right)\left(\frac{dI(t)}{I(t)} - \frac{dS_0(t)}{S_0(t)}\right) + p(t)C(t)dt.$$
(15)

3

イロト イポト イヨト イヨト

## Numerical analysis



Figure: Median paths of optimal investment proportion with  $\delta = 3.4 \pm 4 \pm 5.4 \pm 5.4$ 

M. Di Giacinto, D. Mancinelli, M. Marino and I. Oliva

XIII GIORNATA DELLA RICERCA



- We studied the optimal investment problem for a DC pension scheme in a framework where both interest rate risk and longevity risk are considered.
- Our theoretical results and subsequent numerical studies showed evidence that the longevity bond plays an important role in DC scheme's risk management.
- We observed that more risk-averse the scheme manger, lower the investment proportion in longevity bond. However, even for a highly risk-averse manager, we showed that it is optimal to invest a large proportion of the scheme's wealth in the longevity bond.

э.

## Thanks for the attention!

M. Di Giacinto, D. Mancinelli, M. Marino and I. Oliva

XIII GIORNATA DELLA RICERCA

11 / 11

э

イロト イボト イヨト イヨト