
One-Dimensional Proof
of the Gaussian Integral

Maria Giuseppina Bruno Roberto De Marchis
Arsen Palestini Stefano Patrì Maria Rita Scarpitti

“SAPIENZA” University of Rome

Faculty of ECONOMICS

Research Days of MEMOTEF Department

June 2023, the 27th-28th



Statement of the problem

The well-known Gaussian Integral, that we denote by G , is

G =

∫ +∞

0
e−x

2
dx =

√
π

2
.

Its most famous and simplest proof is the one involving a double
integral on the whole plane R2, that is(∫ +∞

0
e−x

2
dx

)2
=

∫ +∞

0
e−x

2
dx

∫ +∞

0
e−y

2
dy =

=

∫
x ,y>0

e−(x
2+y2) dx dy =

∫ +∞

0
e−r

2
r dr

∫ π/2

0
dθ =

π

4
.
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Statement of the problem

Since this proof involves a double integral, we present a proof involv-
ing functions and sequences of one variable, only, by starting from
the convergent series

∞∑
k=0

x2k

k!
= ex

2
,

from which we get the inequality ex
2
> 1 + x2, that we rewrite in

the form with the inverse of both sides

e−x
2
6

1
1+ x2

. (1)
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Statement of the problem

In order to prove the inequality e−x
2
> 1−x2 for 0 6 x 6 1, we write

Taylor’s formula of e−x
2
in x0 = 0 by expanding the polynomial up to

the order 2, with 0 6 x 6 1 such that the point c , whose existence
is stated by Taylor’s theorem, belongs to the interval 0 < c < x 6 1.

Since the third derivative of e−x
2
is 4x(3 − 2x2)e−x

2
and is always

positive on [0, 1], we get Taylor’s formula

e−x
2
= 1− x2 +

2c(3− 2c2)e−c
2

3
x3,

from which the inequality

e−x
2
> 1− x2 (2)

follows, for 0 6 x 6 1.
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Inequalities for the Gaussian Integral

By writing together the inequalities (1) and (2), we have

1− x2 6 e−x
2
6

1
1+ x2

,

for 0 6 x 6 1, from which we obtain the inequality between the
integrals on [0, 1] of the positive integer n-th powers∫ 1

0

(
1− x2

)n
dx 6

∫ 1

0
e−nx

2
dx 6

∫ 1

0

dx

(1+ x2)n
, (3a)

that is∫ 1

0

(
1− x2

)n
dx 6

1√
n

∫ √n
0

e−x
2
dx 6

∫ 1

0

dx

(1+ x2)n
, (3b)

where for the second integral in (3a) we have changed x
√
n = y .
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Inequalities for the Gaussian Integral

If we denote the first and third integral in (3b) as sequences

Jn =

∫ 1

0

(
1− x2

)n
dx and Kn =

∫ 1

0

dx

(1+ x2)n
, (4a)

we can finally write the inequality

√
n Jn 6

∫ √n
0

e−x
2
dx 6

√
n Kn , (4b)

to which we apply the sandwich theorem that will give us

lim
n→+∞

√
n Jn =

√
π

2
6
∫ +∞

0
e−x

2
dx 6

√
π

2
= lim

n→+∞

√
n Kn .
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Equality for Wallis product

In order to compute the two limits

lim
n→+∞

√
n Jn and lim

n→+∞

√
n Kn

of the first and third sequences in (4b), let us prove that the equality

16n (n!)4

(2n)! (2n + 1)!
=

n∏
k=1

4k2

4k2 − 1
(5)

holds for all positive integer index n, where the product in the right-
hand side of (5) is called Wallis Product.
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Equality for Wallis product

If we define the sequence

an :=
16n (n!)4

(2n)! (2n + 1)!
−

n∏
k=1

4k2

4k2 − 1
,

it is straightforward to notice that the following relations
a1 =

161 (1!)4

(2!) (3)!
−

1∏
k=1

4k2

4k2 − 1
=

16
12
− 4

3
= 0,

an+1 =
4 (n + 1)2

(2n + 1)(2n + 3)
an

hold, from which, by induction, we get an = 0, for all positive integer
index n, and then the equality (5) is true for all positive integer n.
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Limit of Wallis product

In order to compute the limit of Wallis product

lim
n→+∞

n∏
k=1

4k2

4k2 − 1
,

we compute the limit of the inverse Wallis product

lim
n→+∞

n∏
k=1

4k2 − 1
4k2

=

(
1− 1

4

)(
1− 1

16

)(
1− 1

36

)
· · ·
(
1− 1

4n2

)
=

= lim
n→+∞

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·
(
1− x2

n2π2

)∣∣∣∣
x=π/2

=

= lim
n→+∞

[(
1− x

π

)(
1+

x

π

)] [(
1− x

2π

)(
1+

x

2π

)]
·

·
[(

1− x

3π

)(
1+

x

3π

)]
· · ·
[(

1− x

nπ

)(
1+

x

nπ

)]∣∣∣
x=π/2

.
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Limit of Wallis product

It is straightforward to recognize that the limit

lim
n→+∞

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·
(
1− x2

n2π2

)
=

= lim
n→+∞

[(
1− x

π

)(
1+

x

π

)] [(
1− x

2π

)(
1+

x

2π

)]
·

·
[(

1− x

3π

)(
1+

x

3π

)]
· · ·
[(

1− x

nπ

)(
1+

x

nπ

)]
is the infinite factorization of the Taylor’s series of an even function,
that we denote by f (x), such that

f (0) = 1 (6a)

and whose zeros are

xk = kπ, for all k ∈ Z with k 6= 0. (6b)
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Limit of Wallis product

Since the only function satisfying the two properties (6) is

f (x) =
sin x

x
,

we get the limit of the inverse Wallis product

lim
n→+∞

n∏
k=1

4k2 − 1
4k2

= lim
n→+∞

n∏
k=1

(
1− x2

k2π2

)∣∣∣∣∣
x=π/2

=

=
sin x

x

∣∣∣∣
x=π/2

=
2
π

and then the limit of Wallis product

lim
n→+∞

n∏
k=1

4k2

4k2 − 1
=
π

2
. (7)
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Sequence of the integrals Jn

We now determine the sequence Jn in (4a) by expanding the integral

Jn =

∫ 1

0

(
1− x2

)n
dx =

∫ π/2

0
(cos t)2n+1 dt = 2nJn−1 − 2nJn ,

from which we get the “Cauchy problem”
Jn =

2n
2n + 1

Jn−1 ,

J0 =

∫ 1

0
dx = 1,

which is a homogeneous finite difference equation of first order,
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Sequence of the integrals Jn

whose solution is

Jn =

∫ 1

0

(
1− x2

)n
dx =

4n(n!)2

(2n + 1)!
, (8)

because by induction we have

J1 =
2
3
, J2 =

4
5
· 2
3
, J3 =

6
7
· 4
5
· 2
3
, . . . , Jn =

(2n)!!
(2n + 1)!!

,

where

(2n)!! = (2n)(2n − 2)(2n − 4) · · · (6)(4)(2) = 2n · n!

and

(2n + 1)!! = (2n + 1)(2n − 1)(2n − 3) · · · (7)(5)(3) = (2n + 1)!
2n · n!

.
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Limit of the product
√
n Jn

If we now divide by 2n + 1 both sides of (5), we obtain

√
n Jn =

√
n

[
(2n)!!

(2n + 1)!!

]
=
√
n

[
4n(n!)2

(2n + 1)!

]
=

=

√√√√ n

2n + 1

n∏
k=1

4k2

4k2 − 1
,

(9)

from which we get the limit of the sequence on the left in (4b)

lim
n→+∞

√
n Jn = lim

n→+∞

√√√√ n

2n + 1

n∏
k=1

4k2

4k2 − 1
=

√
π

2
.
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A series from the integrals Jn

If we now write (8) with the index k and divide its second and third
side by ak , with a > 1, the sum over k from 0 up to n actually reads

n∑
k=0

(4/a)k (k!)2

(2k + 1)!
=

n∑
k=0

∫ 1

0

(
1− x2

a

)k
dx =

=

∫ 1

0

n∑
k=0

(
1− x2

a

)k
dx =

∫ 1

0
fn(x) dx ,

where

fn(x) =
n∑

k=0

(
1− x2

a

)k
=

1−
(
1− x2

a

)n+1

1− 1− x2

a

.
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A series from the integrals Jn

Since the sequence of functions fn(x) satisfies the inequality

|fn(x)| 6
a

a− 1+ x2
∈ L1([0, 1]),

we can apply Lebesgue’s dominated convergence theorem to ex-
change limit and integral, from which we get

+∞∑
k=0

(4/a)k (k!)2

(2k + 1)!
= lim

n→+∞

∫ 1

0
fn(x) dx =

∫ 1

0
lim

n→+∞
fn(x) dx =

=

∫ 1

0

a

a− 1+ x2
dx =

a√
a− 1

arctan

(
1√
a− 1

)
.
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A series from the integrals Jn

By putting a = 2 in the first and the last term, the relation

+∞∑
k=0

2k (k!)2

(2k + 1)!
=
π

2
(10)

follows.
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Sequence of the integrals Kn

We now determine the sequence Kn in (4a) by expanding the integral

Kn =

∫ 1

0

dx

(1+ x2)n
=

∫ π/2

0
(cos t)2n−2 dt =

=
1

2n−1
+ (2n − 3)Kn−1 − (2n − 3)Kn ,

from which we get the “Cauchy problem”
Kn =

2n − 3
2n − 2

Kn−1 +
1

2n(n − 1)
,

K1 =

∫ 1

0

dx

1+ x2
=
π

4
,

which is a non-homogeneous finite difference equation of first order,
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Sequence of the integrals Kn

whose solution is

Kn =
(2n − 3)!!
(2n − 2)!!

[
π

4
+

n−2∑
k=0

(2k + 2)!!
(2k + 1)!! 2k+2(k + 1)

]
,

that, by virtue of the equality (9), can be rewritten in the form

Kn =

√√√√ 1
2n − 1

n−1∏
k=1

4k2 − 1
4k2

[
π

4
+

1
2

n−2∑
k=0

2k (k!)2

(2k + 1)!

]
,

from which we get the limit
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Limit of
√
n Kn

lim
n→+∞

√
n Kn =

= lim
n→+∞

√√√√ n

2n − 1

n−1∏
k=1

4k2 − 1
4k2

[
π

4
+

1
2

n−2∑
k=0

2k (k!)2

(2k + 1)!

]
=

=

√
1
2
· 2
π

(
π

4
+

1
2
· π
2

)
=

√
π

2

and then the sandwich theorem

lim
n→+∞

√
n Jn =

√
π

2
6
∫ +∞

0
e−x

2
dx 6

√
π

2
= lim

n→+∞

√
n Kn

applied to the inequality (4b), which gives the result of the Gaussian
Integral.
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