Efficient estimation of finite mixtures of Mallows models with the Spearman distance

Marta Crispino 1 Cristina Mollica 2 Valerio Astuti 1 Luca Tardella 2

¹Dipartimento di Economia e Statistica, Banca d'Italia

²Dipartimento di Scienze Statistiche, Sapienza Università di Roma cristina.mollica@uniroma1.it

Dodicesima Giornata della Ricerca MEMOTEF

Piazza dei Cavalieri di Malta 2, Rome, Italy 31 May – 1 June 2022

Ranking data

Ranking data are common in contexts where

- the phenomenon cannot be measured in objective and precise manner
- experiment: N subjects rank n items according to a certain criterion

Examples of research fields requiring rank data analysis:

- social and behavioral sciences
 - preference studies (items = degree courses or jobs)
 - marketing surveys (items = consumer goods)
 - political/election studies (items = political candidates or goals)
 - $\bullet \ \ psychological \ studies \ (items = words \ or \ topics) \\$
- sport/racing contexts
 - national soccer championships (items = soccer teams)
 - horse or car races (items = horses or cars).

A complete (or full) ranking is a bijective mapping

$$\pi:I\to R$$

- $I = \{1, ..., n\}$ is the set of labeled **items**
- $R = \{1, \dots, n\}$ is the set of ranks
- n = number of items to be ranked.

$$\pi = (\pi(1), \ldots, \pi(n))$$

$$\downarrow$$

 $\pi(i) = \text{rank attributed to the } i\text{-th item}$

Example: $\pi = (3, 5, 2, 1, 4) \Leftrightarrow$ Item 1 ranked 3rd, Item 2 ranked 5th...

The ranking space

 $\mathcal{P}_n = \text{set of all } n! \ \underline{\textit{permutations}} + \textit{composition operation} \circ$

$$\pi\sigma^{-1} = \pi \circ \sigma^{-1} = (\pi(\sigma^{-1}(1)), \dots, \pi(\sigma^{-1}(n)))$$

Marden. 1995. Analyzing and modeling rank data, Monographs on Statistics and Applied Probability, vol. 64, Chapman & Hall, London.

Distance-based models

Features of the **Mallows models** (MMs):

- their paternity is attributed to Mallows (1957)
- they represent exponential families for random permutations
- based on the notion of metric between rankings

$$\mathbb{P}(\mathbf{r}|\boldsymbol{\rho},\theta) = \frac{e^{-\theta d(\mathbf{r},\boldsymbol{\rho})}}{Z(\theta,\boldsymbol{\rho})} \qquad \mathbf{r} \in \mathcal{P}_n$$

- $oldsymbol{
 ho}\in\mathcal{P}_n$ is the consensus ranking
- $oldsymbol{ heta}$ $heta\in\mathbb{R}_0^+$ is the concentration parameter
- $d(\cdot, \cdot)$ is a distance over \mathcal{P}_n
- $Z(\theta, \rho) = \sum_{r \in \mathcal{P}_{a}} e^{-\theta d(r, \rho)}$ is the normalizing constant

Mallows. 1957. Non-Null Ranking Models. I, Biometrika 44, no. 1/2, 114-130.

Metrics for rankings

Metrics

Some of the most popular metrics for rankings are

- the Kendall distance $d_K(\mathbf{r}, \rho) = \sum \sum_{1 \le i < i' \le n} I_{[(r(i) r(i'))(\rho(i) \rho(i')) < 0]}$
- the Cayley distance $d_C(\mathbf{r}, \boldsymbol{\rho})$ corresponding to the minimum number of transpositions needed to transform \mathbf{r}^{-1} into $\boldsymbol{\rho}^{-1}$
- the Hamming distance $d_H(\mathbf{r}, \boldsymbol{\rho}) = \#\{i = 1, \dots, n : r(i) \neq \rho(i)\}$
- the Spearman distance

$$d_{S}(\mathbf{r},\boldsymbol{\rho}) = \sum_{i=1}^{n} (r_{i} - \rho_{i})^{2}$$

Properties:

- **4** all metrics are right-invariant $\implies Z(\theta, \rho) = Z(\theta)$
- $oldsymbol{2}$ only some distances are decomposable \implies closed-form for Z(heta)
 - igoplus extstyle exts

MM with the Spearman distance (MMS)

The MMS can be written as

$$\mathbb{P}(\boldsymbol{r}|\boldsymbol{\rho},\theta) = \frac{\mathrm{e}^{-2\theta\left(c_n - \rho'\boldsymbol{r}\right)}}{Z(\theta)} \qquad \boldsymbol{r} \in \mathcal{P}_n$$

where e = (1, 2, ..., n) and $c_n = n(n+1)(2n+1)/6$.

Remarks:

- it is also known as θ -model
- it is the analogue of the Gaussian distribution over \mathcal{P}_n
- importantly, Feigin and Cohen (1978) pointed out that

$$\hat{\boldsymbol{\rho}} = (\hat{\rho}_1, \dots, \hat{\rho}_i, \dots, \hat{\rho}_n)$$
 with $\hat{\rho}_i = \operatorname{rank}(\bar{r}_i)$ in $\{\bar{r}_1, \dots, \bar{r}_n\}$,

Feigin and Cohen. 1978. On a Model for Concordance Between Judges, Journal of the Royal Statistical Society. Series B (Methodological) 40, no. 2, 203–213.

MLF of MMS mixtures via FM

To account for unobserved sample heterogeneity, we assume

$$\mathbb{P}(\boldsymbol{r}|\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\omega}) = \sum_{g=1}^{G} \omega_{g} \mathbb{P}(\boldsymbol{r}|\boldsymbol{\rho}_{g},\theta_{g}) = \sum_{g=1}^{G} \omega_{g} \frac{e^{-2\theta_{g} \left(c_{n} - \rho_{g}^{\prime} \boldsymbol{r}\right)}}{Z(\theta_{g})}$$

We conducted MLE with the EM algorithm by extending the approach by Beckett (1993) for partial rankings.

- N_l is the frequency of the observed partial sequence r_l where only a subset $\mathcal{I}_I \subseteq \{1, 2, \dots, n\}$ of $n_I = |\mathcal{I}_I|$ items are actually ranked
- $C(\mathbf{r}_l) \subset \mathcal{P}_n$ is the set of full rankings which are compatible with \mathbf{r}_l
- $r_m^* \in \mathcal{C}(r_l)$ is a generic full ranking compatible with r_l

The complete-data log-likelihood of the G-component MMS mixture is

$$\ell_{c}(\boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\omega}, \mathbf{z}, \underline{\boldsymbol{r}}^{*}) = \sum_{m=1}^{M} \sum_{g=1}^{G} N_{m} z_{mg} \left(\log \omega_{g} - 2\theta_{g} \left(c_{n} - \rho_{g}^{\prime} \boldsymbol{r}_{m}^{*} \right) - \log Z(\theta_{g}) \right)$$

E-step

For m = 1, ..., M and g = 1, ..., G, at iteration (t+1) compute

$$\begin{split} \hat{N}_{m}^{(t+1)} &= \sum_{l: \, \boldsymbol{r}_{m}^{*} \in \mathcal{C}(\boldsymbol{r}_{l})} N_{l} \hat{\rho}_{lm}^{(t)} \\ \hat{z}_{mg}^{(t+1)} &= \frac{\omega_{g}^{(t)} \mathbb{P}\left(\boldsymbol{r}_{m}^{*} | \boldsymbol{\rho}_{g}^{(t)}, \boldsymbol{\theta}_{g}^{(t)}\right)}{\sum_{g'=1}^{G} \omega_{g'}^{(t)} \mathbb{P}\left(\boldsymbol{r}_{m}^{*} | \boldsymbol{\rho}_{g'}^{(t)}, \boldsymbol{\theta}_{g'}^{(t)}\right)} \end{split}$$

where

$$\hat{\boldsymbol{\rho}}_{lm}^{(t)} = \mathbb{P}(\boldsymbol{r}_m^* \, | \boldsymbol{r}_l, \boldsymbol{\rho}^{(t)}, \boldsymbol{\theta}^{(t)}, \boldsymbol{\omega}^{(t)}) = \frac{\sum_{g=1}^G \omega_g^{(t)} e^{-2\theta_g^{(t)}\left(c_n - \boldsymbol{\rho}_g^{\prime(t)} \boldsymbol{r}_m^*\right) - \log Z\left(\theta_g^{(t)}\right)}}{\sum_{\boldsymbol{s}^* \in \mathcal{C}(\boldsymbol{r}_l)} \sum_{g=1}^G \omega_g^{(t)} e^{-2\theta_g^{(t)}\left(c_n - \boldsymbol{\rho}_g^{\prime(t)} \boldsymbol{s}^*\right) - \log Z\left(\theta_g^{(t)}\right)}}$$

M-step

By setting $\hat{N}_g^{(t+1)} = \sum_{m=1}^M \hat{N}_m^{(t+1)} \hat{z}_{mg}^{(t+1)}$, for $g = 1, \dots, G$ compute

$$egin{aligned} \omega_{\mathcal{g}}^{(t+1)} &= rac{\hat{N}_{\mathcal{g}}^{(t+1)}}{\mathcal{N}} \ oldsymbol{
ho}_{\mathcal{g}}^{(t+1)} &: \quad
ho_{\mathcal{g}i}^{(t+1)} &= \operatorname{rank}\left(ar{r}_{\mathcal{g}i}^{*(t+1)}
ight) \ eta_{\mathcal{g}}^{(t+1)} &: \quad \operatorname{E}_{ heta_{\mathcal{g}}}[D_{\mathcal{S}}] &= 2\left(c_{n} - oldsymbol{
ho}_{\mathcal{g}}^{'(t+1)} ar{oldsymbol{r}}_{\mathcal{g}}^{*(t+1)}
ight) \end{aligned}$$

where $\bar{r}_{gi}^{*(t+1)} = \frac{\sum_{m=1}^{M} \hat{N}_{mg}^{(t+1)} r_{mi}^{**}}{\hat{N}_{i}^{(t+1)}}$ and $\mathsf{E}_{\theta_{\mathcal{B}}}[D_{\mathcal{S}}] = \frac{\sum_{d \in \mathcal{D}_{n}} dN_{d} \, \mathrm{e}^{-d\theta_{\mathcal{B}}}}{\sum_{d \in \mathcal{D}_{n}} N_{d} \, \mathrm{e}^{-d\theta_{\mathcal{B}}}}$ with

$$\mathcal{D}_n = \left\{ 2n : n \in \mathbb{N}_0 \text{ and } 0 \le d \le 2 \binom{n+1}{3} \right\}$$

$$N_d = \left| \left\{ \mathbf{r}^* \in \mathcal{P}_n : d(\mathbf{r}^*, \mathbf{e}) = d \right\} \right|$$

Novel approximation of N_d for $n \ge 15$

Application to the Reading Genres dataset

- **2. Reading Genres data (top-5 rankings)**: N=507 people ranked K=11 reading genres in order of preference
 - 1. Classic 2. Novel 3. Thrillers 4. Fantasy 5. Biography
 - 6. Teenage 7. Horror 8. Comics 9. Poetry 10. Essay 11. Humor
 - <u>brand new data</u> from a survey conducted in Italy in 2019
 - ullet estimation of G-component MMS-mixture with $\emph{G}=1,\ldots,5$

Table. BIC values of the MMS-mix fitted to the Reading Genres data.

Application to the Reading Genres dataset

	Group 1	Group 2	Group 3
ω	0.42	0.07	0.51
θ	0.048	0.036	0.038
Rank 1	Novel	Fantasy	Novel
Rank 2	Classic	Comics	Thrillers
Rank 3	Thrillers	Teenage	Fantasy
Rank 4	Essay	Humor	Classic
Rank 5	Biography	Classic	Teenage
Rank 6	Poetry	Horror	Horror
Rank 7	Fantasy	Novel	Biography
Rank 8	Comics	Thrillers	Comics
Rank 9	Humor	Essay	Poetry
Rank 10	Horror	Biography	Essay
Rank 11	Teenage	Poetry	Humor

In conclusion...

- ullet existence of a closed-form for the MLE of ho for the MMS
- MLE of MMS mixtures via an efficient EM algorithm
- extension via data augmentation for various forms of partial rankings
- novel approximation of the Spearman distance distribution for large n
- successful application to real datasets

For the future...

- construction of a novel R package for mixtures of MMSs
- inclusion of individual and/or item-specific covariates

