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cristina.mollica@uniroma1.it

Dodicesima Giornata della Ricerca MEMOTEF
Piazza dei Cavalieri di Malta 2, Rome, Italy

31 May – 1 June 2022



Introduction Mallows models Our proposals Applications Conclusions

Ranking experiments

Ranking data

Ranking data are common in contexts where

the phenomenon cannot be measured in objective and precise
manner

experiment: N subjects rank n items according to a certain criterion

Examples of research fields requiring rank data analysis:

social and behavioral sciences

preference studies (items = degree courses or jobs)
marketing surveys (items = consumer goods)
political/election studies (items = political candidates or goals)
psychological studies (items = words or topics)

sport/racing contexts

national soccer championships (items = soccer teams)
horse or car races (items = horses or cars).
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Notation and basic definitions

What is a ranking?

A complete (or full) ranking is a bijective mapping

π : I → R

I = {1, . . . , n} is the set of labeled items
R = {1, . . . , n} is the set of ranks
n = number of items to be ranked.

π = (π(1), . . . , π(n))

↓
π(i) = rank attributed to the i-th item

Example: π = (3, 5, 2, 1, 4) ⇔ Item 1 ranked 3rd, Item 2 ranked 5th...

The ranking space

Pn = set of all n! permutations + composition operation ◦

πσ−1 = π ◦ σ−1 = (π(σ−1(1)), . . . , π(σ−1(n)))

Marden. 1995. Analyzing and modeling rank data, Monographs on Statistics and
Applied Probability, vol. 64, Chapman & Hall, London.
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Mallows models

Distance-based models

Features of the Mallows models (MMs):

their paternity is attributed to Mallows (1957)

they represent exponential families for random permutations

based on the notion of metric between rankings

P(r |ρ, θ) = e−θ d(r ,ρ)

Z (θ,ρ)
r ∈ Pn

ρ ∈ Pn is the consensus ranking

θ ∈ R+
0 is the concentration parameter

d(·, ·) is a distance over Pn

Z (θ,ρ) =
∑

r∈Pn
e−θ d(r ,ρ) is the normalizing constant

Mallows. 1957. Non-Null Ranking Models. I, Biometrika 44, no. 1/2, 114–130.
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Metrics

Metrics for rankings

Some of the most popular metrics for rankings are

the Kendall distance dK (r ,ρ) =
∑∑

1≤i<i′≤nI[(r(i)−r(i′))(ρ(i)−ρ(i′))<0]

the Cayley distance dC (r ,ρ) corresponding to the minimum number of
transpositions needed to transform r−1 into ρ−1

the Hamming distance dH(r ,ρ) = #{i = 1, . . . , n : r(i) ̸= ρ(i)}
the Spearman distance

dS(r ,ρ) =
n∑

i=1

(ri − ρi )
2

Properties:

1 all metrics are right-invariant =⇒ Z(θ,ρ) = Z(θ)

2 only some distances are decomposable =⇒ closed-form for Z(θ)�� ��Property 2 does not hold for the Spearman distance

Diaconis. 1988. Group representations in probability and statistics, Institute of
Mathematical Statistics, vol. 11, Chapman & Hall, Hayward, CA, USA.
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Distance-based model with the Spearman distance

MM with the Spearman distance (MMS)

The MMS can be written as

P(r |ρ, θ) = e−2θ (cn−ρ′r)

Z (θ)
r ∈ Pn

where e = (1, 2, ..., n) and cn = n(n + 1)(2n + 1)/6.

Remarks:

it is also known as θ-model

it is the analogue of the Gaussian distribution over Pn

importantly, Feigin and Cohen (1978) pointed out that�� ��The MMS admits a closed-form for the MLE of ρw�
ρ̂ = (ρ̂1, . . . , ρ̂i , . . . , ρ̂n) with ρ̂i = rank(r̄i ) in {r̄1, . . . , r̄n},

Feigin and Cohen. 1978. On a Model for Concordance Between Judges, Journal of the
Royal Statistical Society. Series B (Methodological) 40, no. 2, 203–213.
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Finite mixture extension

MLE of MMS mixtures via EM

To account for unobserved sample heterogeneity, we assume

P(r |ρ,θ,ω) =
G∑

g=1

ωgP(r |ρg , θg ) =
G∑

g=1

ωg
e−2θg (cn−ρ′

g r)

Z(θg )

We conducted MLE with the EM algorithm by extending the approach by
Beckett (1993) for partial rankings.

Nl is the frequency of the observed partial sequence rl where only a subset
Il ⊆ {1, 2, . . . , n} of nl = |Il | items are actually ranked

C(rl ) ⊂ Pn is the set of full rankings which are compatible with rl
r∗m ∈ C(rl ) is a generic full ranking compatible with rl

The complete-data log-likelihood of the G-component MMS mixture is

ℓc (ρ,θ,ω, z , r∗) =
M∑

m=1

G∑
g=1

Nmzmg
(
logωg − 2θg

(
cn − ρ′

g r
∗
m

)
− logZ(θg )

)

Beckett. 1993. Maximum Likelihood Estimation in Mallows’s Model Using Partially
Ranked Data, Probability Models and Statistical Analyses for Ranking Data, 92–107.
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Finite mixture extension

E-step

For m = 1, . . . ,M and g = 1, . . . ,G , at iteration (t+1) compute

N̂(t+1)
m =

∑
l : r∗m∈C(rl )

Nl p̂
(t)
lm

ẑ (t+1)
mg =

ω
(t)
g P

(
r∗m|ρ

(t)
g , θ

(t)
g

)
∑G

g ′=1 ω
(t)
g ′ P

(
r∗m|ρ

(t)
g ′ , θ

(t)
g ′

)
where

p̂
(t)
lm = P(r∗m |rl ,ρ(t),θ(t),ω(t)) =

∑G
g=1 ω

(t)
g e

−2θ
(t)
g

(
cn−ρ

′(t)
g r∗m

)
−log Z

(
θ
(t)
g

)
∑

s∗∈C(rl )
∑G

g=1 ω
(t)
g e

−2θ
(t)
g

(
cn−ρ

′(t)
g s∗

)
−log Z

(
θ
(t)
g

)



Introduction Mallows models Our proposals Applications Conclusions

Finite mixture extension

M-step

By setting N̂
(t+1)
g =

∑M
m=1 N̂

(t+1)
m ẑ

(t+1)
mg , for g = 1, . . . ,G compute

ω(t+1)
g =

N̂
(t+1)
g

N

ρ(t+1)
g : ρ

(t+1)
gi = rank

(
r̄
∗(t+1)
gi

)
θ(t+1)
g : Eθg [DS ] = 2

(
cn − ρ′(t+1)

g r̄∗(t+1)
g

)
where r̄

∗(t+1)
gi =

∑M
m=1 N̂

(t+1)
m ẑ(t+1)

mg r∗mi

N̂
(t+1)
g

and Eθg [DS ] =
∑

d∈Dn
dNd e−dθg∑

d∈Dn
Nd e−dθg

with

Dn =

{
2n : n ∈ N0 and 0 ≤ d ≤ 2

(
n + 1

3

)}
Nd = |{r∗ ∈ Pn : d(r∗, e) = d}|�� ��Novel approximation of Nd for n ≥ 15
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Application to the Reading Genres dataset

2. Reading Genres data (top-5 rankings): N = 507 people ranked
K = 11 reading genres in order of preference

1. Classic 2. Novel 3. Thrillers 4. Fantasy 5. Biography

6. Teenage 7. Horror 8. Comics 9. Poetry 10. Essay 11. Humor

brand new data from a survey conducted in Italy in 2019

estimation of G-component MMS-mixture with G = 1, . . . , 5

G = 1 G = 2 G = 3 G = 4 G = 5

16431.64 16001.46 15930.49 15904.41 15930.21

Table. BIC values of the MMS-mix fitted to the Reading Genres data.
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Application to the Reading Genres dataset

Group 1 Group 2 Group 3
ω 0.42 0.07 0.51
θ 0.048 0.036 0.038

Rank 1 Novel Fantasy Novel
Rank 2 Classic Comics Thrillers
Rank 3 Thrillers Teenage Fantasy
Rank 4 Essay Humor Classic
Rank 5 Biography Classic Teenage
Rank 6 Poetry Horror Horror
Rank 7 Fantasy Novel Biography
Rank 8 Comics Thrillers Comics
Rank 9 Humor Essay Poetry
Rank 10 Horror Biography Essay
Rank 11 Teenage Poetry Humor
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Concluding remarks and future research

Conclusions and future work

In conclusion...

existence of a closed-form for the MLE of ρ for the MMS

MLE of MMS mixtures via an efficient EM algorithm

extension via data augmentation for various forms of partial rankings

novel approximation of the Spearman distance distribution for large n

successful application to real datasets

For the future...

construction of a novel R package for mixtures of MMSs

inclusion of individual and/or item-specific covariates
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