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Introduction

� We consider the general problem of Bayesian binary regression. In

particular we focus on probit and logit model.

� We introduce a new class of distributions, the Perturbed Unified

Skew Normal (pSUN), which generalizes the SUN class and show

that it is conjugate to any binary regression model, provided that the

link function can be expressed as a scale mixture of Gaussian

densities.

� We show that, when the number of covariates p is larger than the

sample size n, it is possible to produce an exact posterior simulation

both in the probit and logit framework.
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Modeling Bernoulli Random Variables

We refer to binary regression model when it is assumed a data generating

process with Bernoulli random variables as output.

This kind of model is used in many different context, in finance a scope

of application is in the granting of loans.

One typically models the P(Y = 1).
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Parametric and Semi-parametric Framework

In a parametric, and semi-parametric, framework normally the probability

of i-th observation is equal to 1 is assumed to be a function of some

covariates via a link-calibration functions structure.

Let Y ∈ {0, 1}n, p ∈ (0, 1)n, X ∈ Rn×p and Xi be the i-th row of X ; so

Yi |p
ind∼Bern(pi ) ∀i = 1, 2, . . . , n ,

pi =Λ(η(Xi )) ,

where Λ : R→ [0, 1] is a know link function and η(·) is a calibration

function. Commonly Λ(·) is a CDF of some random variable symmetric

around 0 and η(·) is a linear, i.e.

η(x) = x ′β
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Linear Symmetric Binary Regression

Let Λn(x) =
∏n

i=1 Λ(xi ) for x ∈ Rn, Bx = 2diag(x)− In for x ∈ {0, 1}n

with In the identity matrix of dimension n. So if Λ(·) is symmetric and

η(·) is linear the likelihood of β is

L(y ;β) = Λn(ByXβ) .

Even if theoretically all CDFs are legitimate link functions for Λ(·) mostly

only the standard Gaussian, Gaddum (1933) and Bliss (1934), and

standard Logistic, Berkson (1944), ones are used.

There is no closed form for MLE.
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Bayesian Setting

Due to the shape of the likelihood in Probit and Logit models,

computation of posterior distribution in Bayesian setting has been hard

for long time.

Commonly Metropolis-Hastings algorithms were used or others

approximate methods as Laplace Approximation, Rasmussen and

Williams (2006).

Recently Durante (2019) find a conjugate distribution for the Bayesian

probit model.
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Conjugate Model for Probit Regression i

Arellano-Valle and Azzalini (2006) establish the so-called Unified Skew

Normal family which includes many of the several proposals as

generalization of Skew Normal appeared in the literature.

We say Y ∼ SUNd,m (τ,∆, Γ, ξ,Ω) if its density function is

fY (y) = ϕΩ(y − ξ)
ΦΓ−∆′Ω̄−1∆(τ + ∆′Ω̄−1diag−

1
2 (Ω)(y − ξ))

ΦΓ(τ)
,

where Y = ξ + diag1/2(Ω)X | (U + τ > 0), ξ ∈ Rd , Γ is a m-correlation

matrix, Ω is a d-covariance matrix, and Ω̄ = diag−
1
2 (Ω) Ωdiag−

1
2 (Ω),

and [
X

U

]
∼ Nd+m

([
0

0

]
,

[
Ω̄ ∆

∆′ Γ

])
Notice that the Gaussian distribution is a special case of the SUN.
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Conjugate Model for Probit Regression ii

Durante (2019) shows that in Bayesian probit regression if

β ∼ SUNd,m (τ,∆, Γ, ξ,Ω)

then β|Y is

SUNd,m+n

([
τ

BYX ξ

]
,

[
∆′

BYXdiag
1
2 (Ω)Ω̄

]′
,

[
Γ 0m×n

0n×m In + BYXΩX ′BY

]
, ξ,Ω

)
.

Sampling i.i.d. draws from SUN distribution relies on the

acceptance-rejection algorithm of Botev (2017) that works efficiently for

small value of (m + n) so for large dataset one must use a Gibbs Sampler.
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Extensions

Therefore our aim is to extend the results of Durante (2019) in 2

different ways:

� we introduce a wider class of conjugate family to probit model,

� we extends the result to logistic regression.

For the sake of clarity, we will denote with abuse of notation

diag



x1

x2

. . .

xn


 =


x1 0 . . . 0

0 x2 . . . 0

. . . . . . . . . . . .

0 0 . . . xn
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The Perturbed SUN family

We introduce a new class of distributions, the Perturbed Unified Skew

Normal (pSUN), which generalizes the SUN class.

We say Y ∼ pSUNd,m (QV ,Θ,A, b,QW ,Ω, ξ) if

Y = ξ + diag
1
2 (Ω)X | (T ≤ AX + b) ,

X |W ∼ Nd(0,diag
1
2 (W )Ω̄diag

1
2 (W )) ⊥⊥ T |V ∼ Nm(0,diag

1
2 (V )Θdiag

1
2 (V )) ,

W ∼ QW (·) ∈ Rd ⊥⊥ V ∼ QV (·) ∈ Rm ,

where Ω̄,Θ are correlation matrices and QW (·),QV (·) are generic CDFs

with non negative values only in the positive orthant.
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Conjugate Model

Theorem
In the Bayesian binary regression with linear calibration function, if the

link function is a CDF of some random variable that admits a

representation as Gaussian scale mixtures, with mean 0, then the pSUN

family is a conjugate family.

Notice that the SUN is a special case of pSUN, but also Generalized

Hyperbolic distribution belongs to pSUN family, so also Student-T , skew

Student-T and Bessel function distribution.
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Posterior Sampling

In some situation it is possible get i.i.d. draws from a pSUN distribution

but we use a more general algorithm that rely on Gibbs Sampler:

Suppose at time t we have the values Yt ,Xt ,Tt ,Wt ,Vt , we update them

in the following way:

Sample Vt+1 ∼ V |T = Tt

Sample Wt+1 ∼W |X = Xt

Sample Xt+1,Tt+1 ∼ X ,T |T ≤ AX + b,W = Wt+1,V = Vt+1

Set Σε = ΘV + AΩ̄WA′

Sample ε ∼ TNm(−∞,−b, 0,Σε)

Set Hµ = Ω̄diag1/2(Wt+1)A′Σ−1
ε

Set HΣ = Ω̄− HµAdiag
1/2(Wt+1)Ω̄

Sample Xt+1 ∼ Nd(Hµε,HΣ)

Set Tt+1 = AXt+1 − ε
Set Yt+1 = ξ + diag1/2(Ω)Xt+1
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Logistic Model i

We highlight that the hypothesis of previous theorem are satisfied in the

case of Logistic regression, indeed Andrews and Mallows (1974) and

Stefanski (1991) prove that if

K0(x) =
+∞∑

k=−∞

(−1)k exp(−2k2x2) , x > 0 ,

X |K ∼ N(0, 4K 2) ,

K ∼ K0(·)

then X is a standard Logistic distribution.

K0(·) is the CDF of Kolmogorov distribution that arise in the so-called

Kolmogorov-Smirnov test, Kolmogorov (1933), Smirnov (1939).
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Logistic Model ii

Notice that in order to sample from V |T in the case of Logit model we

must be able to sample from the posterior of Kolmogorov distribution.

We do this via an acceptance-rejection algorithm. It is used as auxiliary

density an inverse Gamma distribution, the theoretically acceptance rate

is always greater than 70%.
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More Covariates Than Observations

A further result holds if there exists the inverse of XX ′, a necessary but

not sufficient condition for this is p ≥ n.

Theorem
In the Bayesian binary regression with linear calibration function, if link

function is a CDF of some random variable symmetric around 0, and

prior on β is such that

β
d
= X ′(XX ′)−1U2 , U2,i

i.i.d.∼ G∗2 (·) , i = 1, 2, . . . , n ,

then

β|Y d
= X ′(XX ′)−1U2|U1 ≤ BYU2 ,

U1,i
i.i.d.∼ Λ(·) .

In this case is very simple to get i.i.d. draws from the posterior

distribution.
14



Conclusions

Our aim is improve computational performances in Bayesian binary

regression in the case link function is a CDF of some random variable

symmetric around 0 and calibration function is linear. Hence:

� we extend the prior conjugate class of Durante (2019) to a wider

prior family,

� we extend the conjugate model to logistic regression case,

� we find a prior suitable when p ≥ n such that it is very simple to get

i.i.d. draws.
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