"Firms' environmental and emission disclosure and their financial performance: a quantile approach"

Riccardo Christopher Spani

Università degli Studi di Roma La Sapienza

June 27, 2023

4 Results and discussion

Environmental Performances and Actual Performances

Research approach:

- How firm's financial performances change in relation to the environmental ones?
- Focus on disclosure indicators and GHG emission levels
- Sectorial perspective
- Quantile regression

Research hypothesis currently applied

ESGscore Env.score GHGemissions

Impact on Tobin's Q (TQ)

Data

- 507 firms for 7 years
- 4 Sectors: Energy; Materials; Transportation; Utilities
- 4 Subsectors: Energy Equipment and Services; Oil, Gas and Consumable Fuels; Chemicals; Electric Utilities
- Structural variables: TQ, Turnover, long term debt, EBITDA, profit margins, employees
- Environmental variables: ESG score, Environmental Pillar score, GHG emissions
- Financial Variables: Return on Assets (ROA), return on Equity (ROE)

Model

$$y_{it} = X_{it}\beta + \gamma z_{it} + \alpha_i + u_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$ (1)

- Auto correlation of errors (Breush-Godfrey test): used FGLS
- First to GICS-4 and then GICS-6
- log framework: Structural and GHG are in natural log

Results

- ESG score and E score highly correlated (95%): H1,2 identical
- ESG score is positively correlated to GHG emissions
- In general the GHG emission levels seem to have a greater effect on firms' TQs than disclosure variables
- At a narrower level, and for some sub-sectors, a better environmental disclosure almost covers the impact of emissions on TQ

- Major polluters financial drive: carbon premium (Bolton and Kacperczyk, 2020)?
- Changes in the TQ: market value appreciation/depreciation? Reduction/increase of book value?
- Strategy is relevant: case to case evaluation

New research approach

 The distribution of financial variables poses crucial challenges in econometric modelling as they are often highly skewed and exhibit atypical values;

Histogram of Tobins_Q

New research approach

- In these cases linear models perform badly as they impose restrictions on the distribution of the response variable;
- Quantile regression provides different advantages:
 - is able to provide a more complete estimate of the entire distribution;
 - is more robust to outliers;
 - may reveal how the marginal effect of explanatory variables vary at different quantile levels of the response distribution (Merlo et al., 2020)

Literature review II

Many scholars resorted to quantile regression. However, results keep being inconclusive:

- Chen and Lee, 2017 found that CSR and company value share a non-linear relationship, and CSR is relevant only after a certain threshold;
- Qiu, 2022 Sun et al., 2019 show that the relationship between CFP ans CSR follows an "inverted-U" shape;
- Lin et al., 2021 instead report a positive relationship between CSR and CFP, but this is true only for low-mid value firms which are in the growth phase;
- Kang and Liu, 2014 believe that engagement in corporate social responsibility activities has a significant positive relation with corporate performance across all quantiles.

Quantile regression

- Fixed τ ∈ (0, 1) the parameters of a linear quantile regression model have the same interpretation as those of any other linear model;
- The intercept: β₀(τ) represents the value of the τ-th quantile of Y when all explanatory variables are null or at their baseline values;
- The slope parameter: β_j(τ) can be interpreted as the rate of change of the τ-th quantile of Y per unit change in the value of the j-th regressor everything else being constant;
- By varying τ , the process $\{\beta(\tau)\}_{\tau\in(0,1)}$ permits us to characterize the effects of X on the whole conditional distribution of Y

Descriptive statistics

Table: Descriptive statistics

Variables	Ν	Mean	St. Dev.	Median	Min	Max	Skeweness	Kurtosis	St. Err.
ΤQ	3549	1,153	1,417	0,915	-0,291	54,178	18,609	589,735	0,024
E Pillar	3549	30,059	17,457	31,008	0,775	84,496	0,034	-0,688	0,293
Inghg	3549	7,080	1,890	6,824	-1,483	12,236	0,303	-0,021	0,032
Inturn	3549	21,497	2,285	21,862	11,285	26,472	-0,813	0,640	0,038
InId	3549	6,582	2,305	6,826	-7,131	11,273	-1,323	3,576	0,039
InEBITDA	3549	6,016	1,647	6,025	-2,924	10,843	-0,131	0,701	0,028
prof_marg	3549	-1710,487	30969,884	5,043	-885415,622	9739,612	-26,544	745,977	519,860
Inemploy	3549	8,338	1,992	8,515	0,000	13,161	-0,945	1,560	0,033
ROA	3549	1,656	17,921	4,100	-260,870	134,920	-5,707	62,586	0,301

Normality and stationarity

	Variable	Statistic		P-value		
	ΤQ	0,34154731		8,7583E-78		
	esgenv	0,96804625		2,126E-27		
	Inghg	0,9678104		1,7273E-27		
Normality test	Inturn	0,95984103		2,8263E-30		
	InId	0,92437943		4,9521E-39		
	InEBITDA	0,99382694		3,6	3,6613E-11	
	Inemploy	0,94734075		6,9	9865E-34	
	prof_marg	0,02938656		3,5542E-86		
-	ROA	0,517	744608	2,2	2236E-71	
	Test		Statisti	с	P-value	
Stationarity test	Levin-Lin-Chu		-64.148	3	<2.2E-16	
	Im-Pesaran-Shin		-74.1	1	<2.2E-16	

Quantile models

Table: Quantile model - E Pillar

Covariates	0.05	0.25	0.50	0.75	0.95
(Intercept)	-0.765 * ** (0.134)	-0.183 (0.127)	0.178 * * (0.085)	0.379* (0.167)	2.008 * ** (0.511)
esgenv	0.002 * *	0.000 (0.000)	0.000 (0.001)	-0.002* (0.001)	0.001 (0.002)
Inturn	0.077 * ** (0.008)	0.069 * ** (0.008)	0.074 * ** (0.005)	0.114 * ** (0.009)	0.174 * ** (0.021)
InId	-0.001 (0.010)	-0.031 * ** (0.008)	-0.071 * ** (0.008)	-0.162 * ** (0.020)	-0.565 * ** (0.063)
InEBITDA	-0.023 * * (0.011)	-0.013 (0.008)	0.021* (0.011)	0.069 * ** (0.026)	0.226 * ** (0.064)
prof _m arg	0.000*	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
Inemploy	-0.050 * ** (0.010)	-0.041 * ** (0.006)	-0.059 * ** (0.008)	-0.101 * ** (0.013)	-0.119 * **
ROA	0.006 * ** (0.002)	0.007 * ** (0.001)	0.008 * ** (0.001)	0.005 (0.003)	-0.013 (0.008)

	Object of the research Research hypothesis Data and model Results and discussion New research approach	
Quantile model	References	

Table: Quantile model - Emissions

Covariates	0.05	0.25	0.50	0.75	0.95
(Intercept)	-0.729 * ** (0.134)	-0.214* (0.118)	0.055 (0.101)	0.405 * * (0.167)	2.301 * ** (0.559)
Inghg	-0.027 * ** (0.010)	-0.062 * **	-0.088 * ** (0.008)	-0.157 * ** (0.010)	-0.286 * ** (0.038)
Inturn	0.074 * ** (0.008)	0.076 * ** (0.007)	0.087 * ** (0.006)	0.129 * ** (0.010)	0.157 * ** (0.029)
InId	0.012 (0.011)	$\begin{pmatrix} -0.011 \\ (0.010) \end{pmatrix}$	-0.051 * **	-0.112 (0.016)	-0.395 * ** (0.059)
InEBITDA	-0.010 (0.012)	0.014	0.062 * ** (0.010)	0.125 * ** (0.016)	0.341 * ** (0.042)
prof _m arg	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
Inemploy	-0.035 * ** (0.009)	-0.035 * **	-0.049 * ** (0.008)	-0.090 * ** (0.011)	-0.086 * * (0.038)
ROA	0.006 * ** (0.002)	0.007 * ** (0.001)	0.007 * ** (0.001)	0.000 (0.003)	-0.017 * ** (0.006)

Preliminary conclusion

- Disclosure indicator does not have any impact on CFP, while GHG emissions does
- Emission levels appear to be more relevant for the firms positioned in the highest quantiles

Further research

- GICS sectors to be investigated
- Understand the process by which the emissions do have an impact on corporate financial performances
- Explore the impact of policy measures, especially in Europe
- Verify any difference between Europe and rest of the world

Cited references I

Bolton, P., & Kacperczyk, M. (2020). *Do investors care about carbon risk?* (Tech. rep.). National Bureau of Economic Research.

 Chen, R. C. Y., & Lee, C.-H. (2017). The influence of csr on firm value: An application of panel smooth transition regression on taiwan. *Applied Economics*, 49(34), 3422–3434. https://doi.org/10.1080/00036846.2016.1262516
 Kang, H.-H., & Liu, S.-B. (2014). Corporate social responsibility

Kang, H.-H., & Liu, S.-B. (2014). Corporate social responsibility and corporate performance: A quantile regression approach. *Quality & Quantity*, 48, 3311–3325.

Cited references II

Lin, W. L., Lee, C., & Law, S. H. (2021). Asymmetric effects of corporate sustainability strategy on value creation among global automotive firms: A dynamic panel quantile regression approach. Business Strategy and the *Environment*, *30*(2), 931–954. https://doi.org/https://doi.org/10.1002/bse.2662 Merlo, L., Petrella, L., Raponi, V., et al. (2020). Sectoral decomposition of co2 world emissions: A joint quantile regression approach. International Review of Environmental and Resource Economics, 14(2-3), 197–239. Qiu, W. (2022). Essays in sustainable finance. The University of Liverpool (United Kingdom).

Cited references III

Sun, W., Yao, S., & Govind, R. (2019). Reexamining corporate social responsibility and shareholder value: The inverted-u-shaped relationship and the moderation of marketing capability. *Journal of Business Ethics*, 160, 1001–1017.

Conclusion

Thank you