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Basic motivation I

In a standard Markowitz setup, assets are selected to form

convenient portfolios. Financial strategies may be different

(risk minimization, utility maximization...) but some portfolios

cannot be compared on the σM plane.

Can instruments borrowed from Cooperative Game Theory

such as the Shapley value and the Banzhaf value be employed

as a criterion to select portfolios?
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Basic motivation II

In recent literature, the Shapley value has been used to assess

the marginal contribution of each asset to the overall volatility

of the portfolio (Shalit, 2020 and 2021) in the framework of a

risk game. In such a game, the values of the portfolios, which

are identified with the subsets of the set of available assets,

are their volatilities.

We are going to adopt a novel approach, which is based on

expected return instead of on volatility.

Namely, we are going to rely on volatility in the Markowitz

problems, and on expected returns in the cooperative game.
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Our strategy I

Consider the set N of N risky assets (or securities) in the

standard Markowitz setting.

The i-th asset is identified by Ai = (σi , Mi ), where σi ≥ 0 is

the volatility and Mi ≥ 0 is the expected return.

Here is our strategy:

1 firstly, we consider all the available subsets of the set of

assets, which are 2N −N − 1. Then we apply Markowitz’

minimization of variance to every subset, thereby

obtaining the minimum variance portfolios (MVPs) for

every possible collection of assets. The sum of the

weights of the assets amounts to 1, and this is the unique

constraint to which the problem is subject.
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Our strategy II

1 Subsequently, we calculate the returns of all the MVPs

that have been determined initially so as to associate a

positive value to all the collections of assets.

2 The assignment of the return value to each possible

subset of the set of assets naturally induces a cooperative

game, which turns out to be a payoff game.

3 Calculating the Shapley and the Banzhaf values of the

above cooperative game yields a ranking among assets,

which can be also employed as a preference structure.
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Determination of MVPs and construction of the

payoff game I

Here we summarize the notation and outline the construction

of our game.

p = (p1, . . . , pN) is the vector of portfolio weights,

subject to the standard linear constraint

p1 + · · ·+ pN = 1. If we assume that no short sales are

allowed, pi ∈ [0, 1] for every i = 1, . . . ,N.

M = (M1, . . . ,MN) is the vector of asset returns, whose

components are assumed to be nonnegative.

C is the N ×N variance-covariance matrix.
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Determination of MVPs and construction of the

payoff game II

P∗ is the MVP which is usually calculated by minimizing

the quadratic form σ2(p1, . . . , pN) = < p, (CpT )T >

subject to the above constraint. If (p∗1 , . . . , p∗N) are the

weights of the MVP, whose volatility is σ∗, we have

P∗ = (σ∗, p∗1M1 + · · ·+ p∗NMN).

v : 2N −→ R is the function which maps each portfolio

of assets to the return level of that portfolio of assets.

Hence, (v , N ) is a cooperative game provided that

v(∅) = 0, i.e. there is no return if the portfolio is empty,

because no investment is carried out.
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Determination of MVPs and construction of the

payoff game III

Basically, if we have a collection of assets S ⊆ N , we

calculate the related MVP, which is indicated as P∗(S).

The expected return of P∗(S) is its second coordinate, i.e.

∑Ai∈S p
∗
i Mi .

Hence, we define the payoff game as follows:

v(S) = ∑
i∈S

p∗i Mi ,

except for the singletons, i.e. v({Ai}) = Mi , and for the

empty set: v(∅) = 0.
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The preference scheme induced by the Shapley

value and by the Banzhaf value I

Definition

Given 2 assets Ai = (σi , Mi ), Aj = (σj , Mj ) ∈ N , we say

that Ai is weakly Shapley-preferred to Aj and we write

Ai ⪰Φ Aj if Φi (v ∗) ≥ Φj (v ∗).

Definition

Given 2 assets Ai = (σi , Mi ), Aj = (σj , Mj ) ∈ N , we say

that Ai is weakly Banzhaf-preferred to Aj and we write

Ai ⪰β Aj if βi (v ∗) ≥ βj (v ∗).
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The preference scheme induced by the Shapley

value and by the Banzhaf value II

Some results on the preference scheme

Proposition

In a 3-player game (v ∗, N ), Ai ⪰Φ Aj and Ai ⪰β Aj if and

only if

v ∗({Ai})− v ∗({Aj}) + v ∗({Ai , Ak})− v ∗({Aj , Ak}) ≥ 0.

Proposition

Given Ai , Aj and Ak in a 3-asset game (v ∗, N ), if

Mi > max

{
Mj ,

σ2
i

σ2
j

(Mj −Mk ) +Mk

}
,

then Ai ≻Φ Aj and Ai ≻β Aj .
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A 3-assets numerical example I

Consider the 3 risky assets which are identified by the

following points in the risk-return plane:

A1 = (0.04, 0.03), A2 = (0.05, 0.04), A3 = (0.06, 0.07),

and the related covariances are

σ12 = −0.02, σ13 = 0, σ23 = 0.

The portfolios which are composed of only one asset are

trivial, in that the volatilities of the related MVPs are the

volatilities of the assets:

v ∗({A1}) = 0.03; v ∗({A2}) = 0.04; v ∗({A3}) = 0.07.
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A 3-assets numerical example II

Firstly, we have to calculate the MVPs of each 2-assets

portfolio. Consider the portfolio {A1, A2}, where we have the

following variance expression:

σ2(p1, p2) = 0.042p21 + 0.052p22 − 0.04 · 0.04 · 0.05p1p2,

that is supposed to be minimized subject to the constraint

p1 + p2 = 1. The MVP is (p∗1 , p
∗
2) = (0.631, 0.369), and the

related expected return is v ∗({A1,A2}) = 0.0337.

Considering assets A1 and A3 yields the variance function:

σ2(p1, p3) = 0.042p21 + 0.062p23 = 0.042p21 + 0.062(1− p1)
2,

which attains its minimum level at (p∗1 , p
∗
3) = (0.692, 0.308),

consequently

v ∗({A1,A3}) = 0.0423.
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A 3-assets numerical example III

In the last case, (p∗2 , p
∗
3) = (0.59, 0.41) and

v ∗({A2,A3}) = 0.0523.

The last MVP to be calculated is the one with all the assets,

for which the Lagrange’s multipliers method is necessary. The

variance function which must be minimized reads as

σ2(p1, p2, p3) = 0.042p21 + 0.052p22+

+0.062p23 − 0.04 · 0.04 · 0.05p1p2,
subject to the linear constraint p1 + p2 + p3 = 1.

Solving the constrained problem yields the MVP

(p1, p2, p3) = (0.55, 0.347, 0.103),
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A 3-assets numerical example IV

then we can deduce the last value for v ∗(·):

v ∗({A1,A2,A3}) = 0.0376.

Since we have all the relevant values now, we can calculate the

Shapley and Banzhaf indices of the game (v ∗, {A1,A2,A3}).
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A 3-assets numerical example V

Φ1(v
∗) =

0!2!
3!

[v∗({A1,A2,A3})− v∗({A2,A3})]+

+
1!1!
3!

[v∗({A1,A2})− v∗({A2})]+

+
1!1!
3!

[v∗({A1,A3})− v∗({A3})] +
2!0!
3!

[v∗({A1})− v∗(∅)] =

=
1

3
(0.0376− 0.0523)+

+
1

6
(0.0337− 0.04) +

1

6
(0.0423− 0.07) +

1

3
· 0.03 = −0.0005.

By analogous arguments, we obtain

Φ2(v
∗) = 0.0094, Φ3(v

∗) = 0.0287.
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A 3-assets numerical example VI

This means that A3 contributes more than the other assets to

the overall payoff of the complete portfolio, which is quantified

as v ∗({A1,A2,A3}) = 0.0376. Note that the contribution of

A1 is negative, meaning that if A1 were not included among

the players, the total gain would be higher (namely 0.0523).

We now turn to the calculation of the Banzhaf index:

β1(v
∗) =

1

4
[0.0376− 0.0523+ 0.0337− 0.04+ 0.0423− 0.07+ 0.03] = −0.0046.

β2(v
∗) =

1

4
[0.0376− 0.0423+ 0.0337− 0.03+ 0.0523− 0.07+ 0.04] = 0.0053.

β3(v
∗) =

1

4
[0.0376− 0.0337+ 0.0423− 0.03+ 0.0523− 0.04+ 0.07] = 0.0246.
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A 3-assets numerical example VI
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A 3-assets numerical example VII

In both cases the chain of inequalities remains the same:

Φ1(v
∗) < Φ2(v

∗) < Φ3(v
∗), β1(v

∗) < β2(v
∗) < β3(v

∗).

Finally, note that both chains exactly reproduce the ordering

induced by the assets’ returns, i.e.

M1 < M2 < M3.

All the MVPs we obtained are summarized here:

P∗({A1,A2,A3}) = (0.0284, 0.0376), P∗({A1,A2}) = (0.031, 0.0337),

P∗({A1,A3}) = (0.0332, 0.0423), P∗({A2,A3}) = (0.0384, 0.0523).
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A 3-assets numerical example VII

In both cases the chain of inequalities remains the same:
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∗) < Φ3(v
∗), β1(v

∗) < β2(v
∗) < β3(v

∗).

Finally, note that both chains exactly reproduce the ordering

induced by the assets’ returns, i.e.

M1 < M2 < M3.

All the MVPs we obtained are summarized here:

P∗({A1,A2,A3}) = (0.0284, 0.0376), P∗({A1,A2}) = (0.031, 0.0337),
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A 3-assets numerical example VII

In both cases the chain of inequalities remains the same:

Φ1(v
∗) < Φ2(v

∗) < Φ3(v
∗), β1(v

∗) < β2(v
∗) < β3(v

∗).

Finally, note that both chains exactly reproduce the ordering

induced by the assets’ returns, i.e.

M1 < M2 < M3.

All the MVPs we obtained are summarized here:

P∗({A1,A2,A3}) = (0.0284, 0.0376), P∗({A1,A2}) = (0.031, 0.0337),

P∗({A1,A3}) = (0.0332, 0.0423), P∗({A2,A3}) = (0.0384, 0.0523).
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A 3-assets numerical example VIII

Figure 1. Assets and MVPs in the plane (σ,M)
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A 3-assets numerical example IX

A kind of efficient frontier for the found portfolios?

Figure 1. Assets and MVPs in the plane (σ,M)
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A 3-assets numerical example X

It is simple to see that MVPs are closer to the vertical axis,

because they result from the variance minimization processes.

Anyway, none of them attains the same return of A3.

As is well known from standard Markowitz theory, not all

portfolios are comparable with respect to both dimensions,

such as P∗({A1,A3}) and P∗({A2,A3}).
But since A2 is Shapley-preferred and Banzhaf-preferred to

A1, we have a criterion to select P∗({A2,A3}).
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A 3-assets numerical example X

It is simple to see that MVPs are closer to the vertical axis,

because they result from the variance minimization processes.

Anyway, none of them attains the same return of A3.

As is well known from standard Markowitz theory, not all

portfolios are comparable with respect to both dimensions,

such as P∗({A1,A3}) and P∗({A2,A3}).
But since A2 is Shapley-preferred and Banzhaf-preferred to

A1, we have a criterion to select P∗({A2,A3}).
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Ideas for possible extensions

Identification of further properties of the preference

schemes induced by the Shapley value and the Banzhaf

value.

Extension of this setup to different kinds of portfolio

optimization problems.

Analysis of the compliance of this preference with the

standard preference schemes.

Determination of a procedure to test this method with

real financial data.
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