Regularity of the Volatility Process Using the Lamperti Transform

S. Bianchi^a D. Angelini^a M. Frezza^a A. Pianese^b

^aMEMOTEF, University "La Sapienza" Rome, Italy

^bQUANTLAB, University of Cassino and Southern Lazio, Italy

27 June 2023

XIII Giornate della Ricerca MEMOTEF, 27-28 June 2023

Table of Contents

Preliminaries

Self-similarity The Lamperti transform (Fractional) Ornstein-Uhlenbeck process

(Rough) Fractional Stochastic Volatility Model (FSVM) Definition

Estimation issues Main results Diameter of PDF space

Data analysis

Stationarity of log-volatility Stationarity of transformed process Autocorrelation Regularity of log-volatility

Table of Contents

Preliminaries

Self-similarity The Lamperti transform (Fractional) Ornstein-Uhlenbeck process

2 (Rough) Fractional Stochastic Volatility Model (FSVM) Definition

Estimation issues Main results Diameter of PDF spa

Data analysis

Stationarity of log-volatility Stationarity of transformed process Autocorrelation Regularity of log-volatility

Definition (Self-similar stochastic process)

The \mathbb{R}^k -valued stochastic process $\{X_t, t \ge 0\}$, nontrivial and continuous at t = 0, is self-similar with parameter $H_0 \ge 0$ (H_0 -ss) if for any a > 0,

$$\{X_{at}\} \stackrel{d}{=} \{a^{H_0}X_t\} \tag{1}$$

where $\stackrel{d}{=}$ denotes the equality of the k-dimensional distributions of X_t .

Remark

If X_t has stationary increments, then they are also self similar with the same parameter H_0 (H_0 -sssi), that is:

$$\{X_{t+a} - X_t\} \stackrel{d}{=} \{a^{H_0}(X_{t+1} - X_t)\}.$$
 (2)

< 日 > < 同 > < 三 > < 三 >

The key role of the work is played by the following

Theorem (Lamperti (1962))

If $\{X_t, t \ge 0\}$ is H-ss and

$$V_t = e^{-tH} X_{e^t}, t \in \mathbb{R},$$

then $\{V_t, t \in \mathbb{R}\}$ is strictly stationary.

Conversely, if $\{V_t, t \in \mathbb{R}\}$ is a strictly stationary process and if for some H > 0

$$X_t = t^H V_{\log t}, \text{ for } t > 0; \ X_0 = 0,$$
 (4)

then $\{X_t, t \ge 0\}$ is H-ss.

(3)

Preliminaries: (Fractional) Ornstein-Uhlenbeck process

Consider the linear SDE (Langevin-like equation) driven by a fractional Brownian motion (fBm) of parameter H_0

$$dV_t^{H_0} = -\alpha V_t dt + dB_t^{H_0}, \quad t \ge 0,$$
(5)

with $\alpha > 0$.

The solution of equation (5) is

$$V_t^{H_0} = e^{-\alpha t} \left(V_0 + \int_0^t e^{\alpha s} dB_s^{H_0} \right)$$
(6)

where the initial value $V_0^{H_0} := \int_{-\infty}^0 e^{\alpha s} d\widehat{B}_s^{H_0}$ with $\widehat{B}_t^{H_0}$ a two-sided fBm. In general, for every $V_0^{H_0} \in L^0(\Omega)$, $V_t^{H_0}$ is called a fractional Ornstein-Uhlenbeck process (fOU) with initial condition $V_0^{H_0}$.

Properties I

- fOU is a stationary process
- When $H_0 = 1/2$ the fOU process reduces to the classical Ornstein–Uhlenbeck process
- The Ornstein–Uhlenbeck process can be obtained from Brownian motion by Lamperti transform

$$V_t^{1/2} = e^{-t} \left(V_0^{1/2} + 2^{-1/2} B_{e^{2t} - 1} \right)$$

in the sense of having the same finite dimensional distributions.

• Property above does not hold for the fOU if $H_0 \neq 1/2$, because $V_t^{H_0}$ in (6) has not the same finite dimensional distribution as its Lamperti transform

$$Z_t^{H_0} = e^{-t} \left(V_0^{H_0} + \sqrt{H_0} B_{e^{t/H_0}-1}^{H}
ight), \quad t \ge 0$$

• The pathwise Riemann-Stieltjes integral in (6) exists and, for $H \in (0, 1/2) \cup (1/2, 1]$, $N = 1, 2, ..., t \in \mathbb{R}$ fixed and $s \to \infty$ it is [Cheridito, Kawaguchi, and Maejima (2003)]

$$\operatorname{Cov}(\mathsf{V}_{t}^{H_{0}}, \mathsf{V}_{t+s}^{H_{0}}) = \frac{1}{2} \sum_{n=1}^{N} \alpha^{-2n} \left(\prod_{k=0}^{2n-1} (2H_{0} - k) \right) s^{2(H_{0} - n)} + \mathcal{O}\left(s^{2(H_{0} - N - 1)} \right)$$

• $\operatorname{Cov}(V_t^{H_0}, V_{t+s}^{H_0})$ decays similarly to $\operatorname{Cov}(B_{h+t}^{H_0} - B_h^{H_0}, B_{h+s+t}^{H_0} - B_{h+s}^{H_0})$ and exhibits short-range dependence if H < 1/2 and long-range dependence if H > 1/2.

Properties III

Figure: Simulated paths of fractional Ornstein-Uhlenbeck process with different Hurst exponents ($\alpha = 0.01$; m = 0.5, $\rho = 0.3$)

Table of Contents

reliminaries

Self-similarity The Lamperti transform (Fractional) Ornstein-Uhlenbeck process

(Rough) Fractional Stochastic Volatility Model (FSVM) Definition Estimation issues Main results Diameter of PDF space

Data analysis

Stationarity of log-volatility Stationarity of transformed process Autocorrelation Regularity of log-volatility

(Rough) Fractional Stochastic Volatility Model

Comte and Renault's Fractional Stochastic Volatility model (1998)

The stock price S_t is described by the following system of SDE's

$$\begin{cases} dS_t = \mu(t, S_t)dt + S_t\sigma_t dW_t \\ d\log(\sigma_t) = \alpha[m - \log(\sigma_t)]dt + \rho dB_t^H \end{cases}$$

- The log-volatility $(\log \sigma_t)$ is modeled by a fOU process.
- Gatheral, Jaisson, and Rosenbaum (2014); Gatheral, Jaisson, and Rosenbaum (2018) provide empirical evidence of H ~ 0.1, which turns (7) into Rough Fractional Stochastic Volatility (RFSV).
- Generalizations: Rough Bergomi model [Bayer, Friz, and Gatheral (2016)]; Rough Heston model [El Euch, Gatheral, and Rosenbaum (2019)].

(7)

Estimation of the regularity parameter, I

Pro roughness

- Generalized Hurst Exponent Livieri et al. (2018): *H* ≃ 0.3 for ATM options S&P500
- Quasi-Likelihood Estimation

Fukasawa, Takabatake, and Westphal (2019): $H \in (0.02, 0.06)$ for five 5-min stock indices.

- Generalized Method of Moments Bolko et al. (2022): $H \lesssim 0.05$ for a large panel of equity indices.
- OLS on second order variogram

Bennedsen, Lunde, and Pakkanen (2021): $H \in (0.1, 0.2)$ for S&P500 E-mini futures contracts.

• Multifractal Detrended Fluctuation Analysis Takaishi (2020): non costant generalized Hurst exponent in Bitcoin volatility.

Questionable roughness

- Cont and Das (2022) use a non-parametric method based on normalized *p*-th variation along a sequence of partitions and show that the realized volatility exhibits rough behaviour, irrespective of the roughness of the spot volatility process.
- Rogers (2023) finds that the roughness of volatility can be explained by simpler models such as a bivariate Ornstein-Uhlenbeck model.
- Angelini and Bianchi (2023) show that highly nonlinear biases appear when the Hurst exponent is estimated by smoothing moment-based methodologies.

We apply the Lamperti transform to convert the (stationary) log-volatility into a self-similar process.

In this regard, we prove that:

- The self-similarity parameter of the transformed process is invariant w.r.t. the parameter of the Lamperti transform
- The Lamperti transform of the fOU process driven by a fBm of parameter H_0 is itself H_0 -ss
- We use a distribution-based method [Bianchi (2004)] to estimate the self-similarity parameter of the transformed process.
 - Open problem: Generalize the Kolmogorov-Smirnov distributions to dependent data
- > We provide evidence of roughness in the log-volatility

We state the following

Proposition (Uniqueness)

Let $\{Y_t, t \in \mathbb{R}\}$ be strictly stationary. Then its Lamperti transform $X_t = t^H Y_{\log t}$ is H_0 -ss for any H.

Implication. The Lamperti transform can be calculated with any H.

Proof. Let $H \in (0, 1]$, $X_0 = 0$ and t > 0. From the Lamperti transform one has

$$X_t = t^H Y_{\log t}$$
 and $X_{at} = (at)^H Y_{\log at}.$

By definition, X_t is self-similar of parameter H_0 if $\{a^{H_0}X_t\} \stackrel{d}{=} \{X_{at}\}$, that is

$$\{a^{H_0}t^H Y_{\log t}\} \stackrel{d}{=} \{a^H t^H Y_{\log at}\}$$

Main results II

The factor t^H can be cancelled and this entails that the choice of H in equation (4) does not affect the self-similarity parameter H_0 . In fact,

$$\{a^{H_0}Y_{\log t}\} \stackrel{d}{=} \{a^HY_{\log a + \log t}\}.$$

By the stationarity of Y_t , $\{Y_{\log a + \log t}\} \stackrel{d}{=} \{Y_{\log t}\}$, therefore

$$\{a^{H_0}Y_{\log t}\} \stackrel{d}{=} \{a^HY_{\log t}\}$$

if and only if $H = H_0$, whatever t^H is considered in the Lamperti transform.

Proposition (Identity)

The Lamperti transform (4) of the fOU process driven by a fBm of parameter H_0 is H_0 -ss.

Implication. The roughness of the log-volatility (provided it follows a fOU process) can be estimated as the self-similarity parameter of the Lamperti transformed process.

Proof. Without loss of generality, we set $V_0 = 0$, so that

$$V_t = e^{-\alpha t} \int_0^t e^{\alpha s} dB_s^{H_0}.$$

Main results IV

For any H, we have to prove that $X_{at} \stackrel{d}{=} a^{H_0}X_t$ with $X_t = t^H V_{\log t}$. It is

$$X_{at} = (at)^{H} V_{\log(at)}$$

= $(at)^{H} e^{-\alpha \log(at)} \int_{0}^{\log(at)} e^{\alpha s} dB_{s}^{H_{0}}$
= $(at)^{H-\alpha} \int_{0}^{\log(at)} e^{\alpha s} dB_{s}^{H_{0}}$ (8)

and

$$a^{H_0}X_t = a^{H_0}t^H V_{\log(t)}$$

= $a^{H_0}t^H e^{-\alpha \log t} \int_0^{\log t} e^{\alpha s} dB_s^{H_0}$
= $a^{H_0}t^{H-\alpha} \int_0^{\log t} e^{\alpha s} dB_s^{H_0}.$ (9)

< □ > < □ > < □ > < □ >

Main results V

Equating in distribution (8) and (9), we have

$$a^{H-\alpha} \int_{0}^{\log(at)} e^{\alpha s} dB_{s}^{H_{0}} \stackrel{d}{=} a^{H_{0}} \int_{0}^{\log t} e^{\alpha s} dB_{s}^{H_{0}}.$$
 (10)

Let us prove that the above equality holds if and only if $H = H_0$. If this equality is true, then simplifying (10) we have

$$\int_0^{\log(at)} e^{\alpha s} dB_s^{H_0} \stackrel{d}{=} a^\alpha \int_0^{\log t} e^{\alpha s} dB_s^{H_0}.$$
 (11)

Setting $v = s + \log a$ yields to

$$\int_{0}^{\log(at)} e^{\alpha s} dB_{s}^{H_{0}} \stackrel{d}{=} a^{\alpha} \int_{\log a}^{\log(at)} e^{\alpha(\nu - \log a)} dB_{\nu - \log a}^{H_{0}}$$
$$\int_{0}^{\log(at)} e^{\alpha s} dB_{s}^{H_{0}} \stackrel{d}{=} a^{\alpha} \int_{\log a}^{\log(at)} e^{\alpha \nu} a^{-\alpha} dB_{\nu - \log a}^{H_{0}}.$$

Since:

- stationarity of dB^{H_0} entails that $dB^{H_0}_{\nu-\log a} \stackrel{d}{=} dB^{H_0}_{\nu}$
- *V* is a stationary process as well [Cheridito, Kawaguchi, and Maejima (2003)]

we finally have

$$\int_0^{\log(at)} e^{\alpha s} dB_s^{H_0} \stackrel{d}{=} \int_0^{\log t} e^{\alpha v} dB_v^{H_0}.$$
 (12)

Thus, process X_t is self-similar with parameter H_0 .

Self-similarity through the diameter of PDF space I

Given the compact set of timescales $\mathcal{A} = [\underline{a}, \overline{a}] \subset \mathbb{R}^+$, for any $a \in \mathcal{A}$, denote by $F_{X_a}(x)$ the CDF of X_{at} .

Equation (1) can be written as

$$F_{X_a}(x) := \mathbf{P}(X_{at} < x) = \mathbf{P}\left(a^{H_0}X_t < x\right) = F_{X_1}(a^{-H_0}x), \quad (13)$$

or, introducing the variable H, as

$$F_{a^{-H}X_a}(x) := \mathbf{P}\left(a^{-H}X_{at} < x\right) = \mathbf{P}\left(a^{H_0 - H}X_t < x\right) = F_{X_1}(a^{H - H_0}x).$$

Let:

- $\Psi_H := \{F_{a^{-H}X_a}(x), a \in \mathcal{A}, x \in \mathbb{R}\}$ be the set of CDF's of $\{a^{-H}X_{at}\}$
- consider the distance function ρ induced by the sup-norm $||\cdot||_\infty$ with respect to $\mathcal{A}.$

The diameter of the metric space (Ψ_H, ρ) is then defined as

$$\delta(\Psi_{H}) := \sup_{x \in \mathbb{R}} \sup_{a,b \in \mathcal{A}} |F_{a^{-H}X_{a}}(x) - F_{b^{-H}X_{b}}(x)|$$

$$= \sup_{x \in \mathbb{R}} \sup_{a,b \in \mathcal{A}} |F_{X_{1}}(a^{H-H_{0}}x) - F_{X_{1}}(b^{H-H_{0}}x)|$$

$$= \sup_{x \in \mathbb{R}} |F_{X_{1}}(\underline{a}^{H-H_{0}}x) - F_{X_{1}}(\overline{a}^{H-H_{0}}x)|.$$
(14)

where $\underline{a} = \min \mathcal{A}$ and $\overline{a} = \max \mathcal{A}$.

Self-similarity through the diameter of PDF space III

The following Propositions hold for $\delta(\Psi_H)$:

Proposition ("Zero" δ)

The process $\{X_t, t \ge 0\}$ is H_0 -ss if and only if $\delta(\Psi_{H_0}) = 0$.

Proposition (Monotonicity in *H*)

Let $\{X_t, t \ge 0\}$ be H_0 -ss. Then $\delta(\Psi_H)$ is non-increasing for $H \le H_0$ and non-decreasing for $H \ge H_0$.

Proposition (Monotonicity in timescales)

Let $\{X_t, t \ge 0\}$ be H_0 -ss and $\{A_i\}_{i=1,...,n}$ be a sequence of timescale sets such that $\underline{a}_i \le \underline{a}_j$ and $\overline{a}_i \ge \overline{a}_j$ for i > j, then, with respect to $\{A_i\}$, $\delta_X(\Psi_H)$ is: (i) non-decreasing, if $H \ne H_0$; (ii) zero, if $H = H_0$.

э

< □ > < □ > < □ > < □ > < □ >

Self-similarity through the diameter of PDF space IV

Proposition (Diameter of fBm)

Let $\{X_t, t \ge 0\}$ be fractional Brownian motion of parameter H_0 , with $\sigma^2 = \mathbb{E}(B_1^H)$. Then

$$\delta_{B_t^H}(\Psi_H) = \sup_{x \in \mathbb{R}} \frac{1}{\sigma\sqrt{2\pi}} \int_{x\overline{a}^{H-H_0}}^{x\underline{a}^{H-H_0}} e^{-u^2/2\sigma^2} du,$$

that is

$$\delta_{B_t^H}(\Psi_H) = \Phi(\hat{x}\overline{a}^{H_0-H}) - \Phi(\hat{x}\underline{a}^{H_0-H})$$

where Φ denotes the cumulative distribution function of a standard normal random variable and

$$\hat{x} = \begin{cases} \sqrt{\frac{2(H_0 - H)}{\bar{a}^{2(H_0 - H)} - \underline{a}^{2(H_0 - H)}} \log \frac{\bar{a}}{\underline{a}}}, & \text{if } H \neq H_0 \\ 0, & \text{if } H = H_0. \end{cases}$$

э

イロト イポト イヨト イヨト

Figure: Sketched estimation of the self-similarity parameter H_0 as $\operatorname{argmin}_{H \in [0,1)} \hat{\delta}(\Psi_H)$. The critical value of the KS test refers to the independence (dashed line), whereas dependence in the samples reflects in a new frontier of critical values (dotted line). Here, assuming to refer to a B_t^H , the two frontiers intersect at the point H = 0.5 (independence).

< ロト < 同ト < ヨト < ヨト

Examples II

Figure: (Bottom panels) KS tests for three simulated fOU of length n = 5,000, with prescribed $H_0 = \{0.25, 0.5, 0.75\}$. The diameter $\delta(\Psi_{H_{SS}})$ is reported as a function of the Lamperti transform parameter $H \in (0, 1)$, with step 0.01, and of the self-similarity parameter $H_{SS} \in (0, 1)$, with step 0.001. (Top panels) *p*-values of the KS tests as a function of *H* and H_{SS} . The minimum δ (maximum *p*-value) is achieved in correspondence of the self-similarity parameters \hat{H}_0 prescribed for the fBm driving the simulated fOU. The set of timescales used is $\mathcal{A} = [1, 5]$.

< ロト < 同ト < ヨト < ヨト

Table of Contents

reliminaries

Self-similarity The Lamperti transform (Fractional) Ornstein-Uhlenbeck process

2 (Rough) Fractional Stochastic Volatility Model (FSVM) Definition

Estimation issues Main results Diameter of PDF spa

Data analysis

Stationarity of log-volatility Stationarity of transformed process Autocorrelation Regularity of log-volatility

Data analysis, stationarity of log-volatility

Ticker	Index	Obs.	ADF	p-value
SPX	Standard & Poor 500 (USA)	4641	-14.390	< 0.001
FTSE	Footsie 100 (GBR)	4660	-15.886	< 0.001
N225	Nikkei 225 (JPN)	4501	-16.238	< 0.001
GDAXI	Dax 30 (DEU)	4692	-14.267	< 0.001
RUT	Russell 2000 (USA)	4636	-18.909	< 0.001
AORD	All Ordinaries (AUS)	4665	-18.861	< 0.001
DJI	Dow Jones I. (USA)	4635	-15.354	< 0.001
IXIC	Nasdaq C. (USA)	4637	-13.526	< 0.001
FCHI	Cac 40 (FRA)	4713	-14.405	< 0.001
HSI	Hang Seng I. (HKG)	4532	-15.611	< 0.001
KS11	Kospi C. I. (KOR)	4550	-11.902	< 0.001
AEX	Amsterdam Exchange I. (NLD)	4714	-13.850	< 0.001
SSMI	Swiss Market I. (CHE)	4636	-13.219	< 0.001
IBEX	Ibex 35 (ESP)	4681	-14.458	< 0.001
NSEI	Nifty 50 (IND)	4586	-15.644	< 0.001
MXX	Mexico Stock Exchange (MEX)	4640	-19.473	< 0.001
BVSP	Bovespa I. (BRA)	4556	-19.268	< 0.001
GSPTSE	Toronto Stock Exchange C. I. (CAN)	4043	-15.314	< 0.001
STOXX50E	Euro Stock 50 (EUR)	4713	-17.973	< 0.001
FTSTI	Straits Times I. (SGP)	2696	-16.045	< 0.001
FTSEMIB	Milano Indice di Borsa (ITA)	2307	-13.069	< 0.001

Figure: The ADF statistics and the *p*-values for the increments $Z_{t,1}$ of the Lamperti transform of log σ_t with $H = \overline{\hat{H}_0}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Ticker	ADF	p-value	Ticker	ADF	p-value	Ticker	ADF	p-value
SPX	-70.445	< 0.001	IXIC	-68.432	< 0.001	NSEI	-75.359	< 0.001
FTSE	-74.268	< 0.001	FCHI	-72.844	< 0.001	MXX	-74.510	< 0.001
N225	-69.858	< 0.001	HSI	-76.352	< 0.001	BVSP	-70.117	< 0.001
GDAXI	-74.407	< 0.001	KS11	-70.493	< 0.001	GSPTSE	-69.420	< 0.001
RUT	-72.623	< 0.001	AEX	-72.336	< 0.001	STOXX50E	-77.253t	< 0.001
AORD	-78.525	< 0.001	SSMI	-71.929	< 0.001	FTSTI	-58.243	< 0.001
DJI	-72.912	< 0.001	IBEX	-72.401	< 0.001	FTSEMIB	-50.403	< 0.001

Figure: The ADF statistics and the *p*-values for the increments $Z_{t,1}$ of the Lamperti transform of log σ_t with $H = \overline{H_0}$, for each examined index.

Data analysis, autocorrelation

	1^{st} lag	2^{nd} lag	3^{rd} lag	4^{th} lag	5^{th} lag
SPX	-0.4017	-0.0142	-0.0339	0.0078	-0.0029
FTSE	-0.4336	-0.0118	-0.0308	-0.0007	0.0131
N225	-0.3715	-0.0565	-0.0018	-0.0421	0.0165
GDAXI	-0.3999	-0.0550	0.0127	-0.0513	0.0492
RUT	-0.4072	-0.0319	-0.0269	0.0137	-0.0105
AORD	-0.4802	0.0131	-0.0313	0.0419	-0.0412
DJI	-0.4338	0.0003	-0.0313	0.0146	-0.0121
IXIC	-0.3414	-0.0629	-0.0478	0.0178	-0.0054
FCHI	-0.3887	-0.0505	-0.0080	-0.0474	0.0756
HSI	-0.4620	-0.0020	0.0075	-0.0149	-0.0245
KS11	-0.4065	-0.0161	-0.0194	-0.0320	0.0019
AEX	-0.3855	-0.0483	-0.0124	-0.0453	0.0655
SSMI	-0.3863	-0.0501	-0.0054	-0.0223	0.0319
IBEX	-0.3753	-0.0650	-0.0079	-0.0351	0.0576
NSEI	-0.4111	-0.0567	0.0238	-0.0152	0.0129
MXX	-0.4528	0.0104	-0.0268	-0.0276	0.0245
BVSP	-0.3752	-0.0503	-0.0499	0.0003	0.0365
GSPTSE	-0.4527	0.0116	-0.0051	-0.0494	0.0160
STOXX50E	-0.4172	-0.0594	0.0202	-0.0308	0.0261
FTSTI	-0.4627	0.0072	-0.0306	0.0012	0.0002
FTSEMIB	-0.3764	-0.0573	-0.0070	-0.0528	0.0858
$fOU_{H=0.25}$	-0.2979	-0.0487	-0.0059	-0.0414	0.0072
$fOU_{H=0.50}$	-0.0143	-0.0096	-0.0061	-0.0186	0.0077
$fOU_{H=0.75}$	0.4084	0.2724	0.2234	0.1858	0.1816

Figure: First five-order autocorrelations for both indexes and fOU processes. $(\Box \rightarrow (\Box) \rightarrow$

Ticker	$\overline{\hat{H}_0}$	$\hat{\delta}$	p-value	Ticker	$\overline{\hat{H}_0}$	$\hat{\delta}$	p-value
SPX	0.142 ± 0.009	0.015 ± 0.001	0.67 ± 0.04	AEX	0.139 ± 0.014	0.020 ± 0.002	0.30 ± 0.10
FTSE	0.110 ± 0.011	0.015 ± 0.001	0.71 ± 0.09	SSMI	0.117 ± 0.008	0.014 ± 0.002	0.73 ± 0.11
N225	0.133 ± 0.008	0.011 ± 0.001	0.94 ± 0.04	IBEX	0.137 ± 0.025	0.024 ± 0.002	0.14 ± 0.05
GDAXI	0.133 ± 0.011	0.017 ± 0.001	0.49 ± 0.09	NSEI	0.130 ± 0.013	0.013 ± 0.007	0.86 ± 0.05
RUT	0.122 ± 0.008	0.012 ± 0.007	0.91 ± 0.03	MXX	0.091 ± 0.009	0.011 ± 0.001	0.95 ± 0.03
AORD	0.060 ± 0.010	0.008 ± 0.005	1.00 ± 0.00	BVSP	0.137 ± 0.015	0.015 ± 0.001	0.70 ± 0.10
DJI	0.112 ± 0.017	0.023 ± 0.001	0.16 ± 0.04	GSPTSE	0.087 ± 0.008	0.010 ± 0.001	0.97 ± 0.03
IXIC	0.151 ± 0.011	0.014 ± 0.002	0.75 ± 0.16	STOXX50E	0.147 ± 0.012	0.017 ± 0.001	0.53 ± 0.09
FCHI	0.117 ± 0.030	0.028 ± 0.002	0.05 ± 0.02	FTSTI	0.067 ± 0.011	0.025 ± 0.003	0.39 ± 0.16
HSI	0.071 ± 0.009	0.011 ± 0.001	0.93 ± 0.05	FTSEMIB	0.122 ± 0.021	0.035 ± 0.003	0.13 ± 0.05
KS11	0.113 ± 0.013	0.018 ± 0.002	0.49 ± 0.13				

Figure: Estimates \hat{H}_0 (values averaged with respect to increasing upper timescale, $\underline{a} = 1$ and $\overline{a} \in [\![2, 20]\!]$). For AORD the exact *p*-value is 0.997 \pm 0.003.

Data analysis, Regularity parameter II

Figure: Top panels: table displays the distances δ and the p-values for the KS tests about increments of Lamperti transform of log σ_t for SPX index with a set of timescales $\mathcal{A} = [1, 5]$. Bottom left: the \hat{H}_0 values estimated for a fOU with $H_0 = 0.10$ for different $\bar{a} \in [2, 20]$. \hat{H}_0 are dispersed around the prescribed H_0 with a mean of $\overline{H}_0 = 0.098 \pm 0.009$. Bottom right: the same analysis is displayed for the log σ_t of the SPX index with an estimated Hurst exponent $\overline{H}_0 = 0.142 \pm 0.009$.

Angelini, D. and S. Bianchi (2023). "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model". In: Chaos, Solitons & Fractals 172, p. 113550. Bayer, C., P. Friz, and J. Gatheral (2016). "Pricing under rough volatility". In: Quantitative Finance 16(6), pp. 887–904. Bennedsen, M., A. Lunde, and M.S. Pakkanen (Jan. 2021). "Decoupling the Short- and Long-Term Behavior of Stochastic Volatility". In: Journal of Financial Econometrics 20(5), pp. 961–1006. Bianchi, S. (2004). "A New Distribution-Based Test of Self-similarity". In: Fractals 12(03), pp. 331-346. DOI: 10.1142/S0218348X04002586. Bolko, E. et al. (2022). "A GMM approach to estimate the roughness of stochastic volatility". In: Journal of Econometrics Available online 15 September 2022.

- Cheridito, P., H. Kawaguchi, and M. Maejima (2003). "Fractional Ornstein-Uhlenbeck processes". In: *Electronic Journal of Probability* 8, pp. 1–14.
- Cont, R. and P. Das (Mar. 2022). "Rough Volatility: Fact or Artefact?" Available at SSRN: https://ssrn.com/abstract=4065951.
- El Euch, O., J. Gatheral, and M. Rosenbaum (2019). "Roughening Heston". In: Risk, Available at SSRN: https://ssrn.com/abstract=3116887, pp. 84–89.
- Fukasawa, M., T. Takabatake, and R. Westphal (May 2019). Is Volatility Rough? Papers 1905.04852. arXiv.org.
- Gatheral, J., T. Jaisson, and M. Rosenbaum (2014). "Volatility is rough". Available at SSRN 2509457.
- Gatheral, J., T. Jaisson, and M. Rosenbaum (2018). "Volatility is rough". In: *Quantitative finance* 18(6), pp. 933–949.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Lamperti, J. (1962). "Semi-stable stochastic process". In: *Trans. Amer. Math. Soc.* 104, pp. 62–78. Livieri, G. et al. (2018). "Rough volatility: Evidence from option prices". In: *IISE Transactions* 50(9), pp. 767–776. Rogers, L.C.G. (2023). "Things We Think We Know, in Lecture Notes in Finance Options - 45 Years since the Publication of the Black-Scholes-Merton Model". In: World Scientific, pp. 173–184. Takaishi, T. (2020). "Rough volatility of Bitcoin". In: *Finance Research Letters* 32, p. 101379.