Stochastic modelling in insurance: participating policies with minimum guaranteed

Gabriele Stabile

XII GIORNATA DELLA RICERCA MEMOTEF 31 May - 1 June 2022

XII GdR MEMOTEF 1/13

PP are life insurance policies which provide both guaranteed and non-guaranteed benefits. Policyholders participate or share in the profits of the participating fund of the insurer.

PP are life insurance policies which provide both guaranteed and non-guaranteed benefits. Policyholders participate or share in the profits of the participating fund of the insurer.

Key features of a PP

 Premiums are pooled with those of other participating policies in a specially designated participating fund

PP are life insurance policies which provide both guaranteed and non-guaranteed benefits. Policyholders participate or share in the profits of the participating fund of the insurer.

Key features of a PP

- Premiums are pooled with those of other participating policies in a specially designated participating fund
- The fund invests in a range of assets, under the control of the company

PP are life insurance policies which provide both guaranteed and non-guaranteed benefits. Policyholders participate or share in the profits of the participating fund of the insurer.

Key features of a PP

- Premiums are pooled with those of other participating policies in a specially designated participating fund
- The fund invests in a range of assets, under the control of the company
- Depending on fund's performance, benefits are paid to the policyholders

(D) (A) (A) (A)

• Guaranteed benefits: {

minimum interest rate guarantee death benefit

(日)

Guaranteed benefits: { minimum interest rate guarantee death benefit
 Non-guaranteed benefits: { Reversionary bonus Terminal bonus

- Guaranteed benefits:
 minimum interest rate guarantee death benefit

Non-guaranteed benefits:
 Reversionary bonus
 Terminal bonus

 surrender benefit: only a proportion of the terminal bonuses is recognized to the policyholder

These benefits and options are liabilities to the issuer that need to be properly evaluated

ヘロア 人間 アメヨア 人間 アー

æ

These policies may constitute a source of **risk** for both

 Policyholders (low returns, liquidity needs);

A B > A B >

These policies may constitute a source of **risk** for both

- Policyholders (low returns, liquidity needs);
- Insurance company (solvency)

Image: A math a math

Let T > 0 be the maturity date of the contract

• Market value of the partecipating fund.

$$\begin{cases} dA_t = A_t (r dt + \sigma d\widetilde{W}_t), \\ A_0 = a_0, \end{cases}$$

• • • • • • • • • • • •

Let T > 0 be the maturity date of the contract

• Market value of the partecipating fund.

$$\begin{cases} dA_t = A_t (r dt + \sigma d\widetilde{W}_t), \\ A_0 = a_0, \end{cases}$$

Policyholder's Reserve

$$\left(\begin{array}{c} \mathrm{d}\boldsymbol{R}_t = \boldsymbol{c}(\boldsymbol{A}_t, \boldsymbol{R}_t)\boldsymbol{R}_t \mathrm{d}t, \\ \boldsymbol{R}_0 = \alpha \, \boldsymbol{a}_0, \end{array} \right.$$

where $\alpha = R_0/A_0$ is the percentage of the reference portfolio financed by the policyholder

The Reversionary Bonus

• Interest rate guarantee
$$c(A_t, R_t) \ge r^G \in (0, r), \quad \forall t > 0$$

・ロ・・母・・ヨ・・ヨ・ りへぐ

XII GdR MEMOTEF

6/13

The Reversionary Bonus

- Interest rate guarantee $c(A_t, R_t) \ge r^G \in (0, r), \quad \forall t > 0$
- Reserve-bases bonus Let $B_t := A_t - R_t$ be the Bonus Reserve.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

The model

The Reversionary Bonus

- Interest rate guarantee $c(A_t, R_t) \ge r^G \in (0, r), \quad \forall t > 0$
- Reserve-bases bonus Let $B_t := A_t - R_t$ be the Bonus Reserve.

The insurer has a specific target for the *Buffer Ratio* $\frac{B_t}{R_t}$ (e.g.10 – 15%). Surplus is credited at time t > 0 if

$$\ln\left(1+\frac{B_t}{R_t}\right) = \ln\left(\frac{A_t}{R_t}\right) > \beta$$

where $\beta > 0$ is the constant *Target Buffer Ratio*

The model

The Reversionary Bonus

- Interest rate guarantee $c(A_t, R_t) \ge r^G \in (0, r), \quad \forall t > 0$
- Reserve-bases bonus Let $B_t := A_t - R_t$ be the Bonus Reserve.

The insurer has a specific target for the *Buffer Ratio* $\frac{B_t}{R_t}$ (e.g.10 – 15%). Surplus is credited at time t > 0 if

$$\ln\left(1+\frac{B_t}{R_t}\right) = \ln\left(\frac{A_t}{R_t}\right) > \beta$$

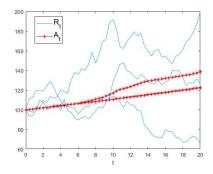
where $\beta > 0$ is the constant *Target Buffer Ratio*

In sum

$$\boldsymbol{c}(\boldsymbol{A}_t, \boldsymbol{R}_t) = \max\left\{\delta\left(\ln\left(\frac{\boldsymbol{A}_t}{\boldsymbol{R}_t}\right) - \beta\right), \boldsymbol{r}^{\boldsymbol{G}}\right\}$$

where δ is the distribution ratio (e.g. 20 – 30%).

The model



Smoothing mechanism: gives the policyholder a rate of return which does not fluctuate very much

Terminal bonus

Terminal bonus payment

• $g(A_t, R_t) := R_t + \overline{\gamma [\alpha A_t - R_t]^+}$, $t \in [0, T]$

where $\gamma \in (0, 1)$ is the so-called participation coefficient.

The terminal bonus is calculated based on the policyhodelr's initial portion of assets $\alpha = \frac{R_0}{A_0}$

・ロト ・同ト ・ヨト ・ヨ

Terminal bonus

Terminal bonus payment

• $g(A_t, R_t) := R_t + \overline{\gamma [\alpha A_t - R_t]^+}$, $t \in [0, T]$

where $\gamma \in (0, 1)$ is the so-called participation coefficient.

The terminal bonus is calculated based on the policyhodelr's initial portion of assets $\alpha = \frac{R_0}{A_0}$

• Default time $\tau^{\dagger} := \inf\{t \ge 0 : A_t \le R_t\}$ (i.e. $B_{\tau^{\dagger}} \le 0$) In the event of $\tau^{\dagger} < T$

$$g(A_{\tau^{\dagger}}, R_{\tau^{\dagger}}) = R_{\tau^{\dagger}},$$

・ロト ・同ト ・ヨト ・ヨ

Life insurance coverage

Let Γ_D be the residual lifetime of an individual aged η at time zero.

Survival probability

$${}_{s}p_{\eta+t}=e^{-\int_{0}^{s}\mu_{\eta}(t+u)du}, \quad \text{for } t,s\geq 0.$$

where μ_{η} denotes the force of mortality at age η

Life insurance coverage

Let Γ_D be the residual lifetime of an individual aged η at time zero.

Survival probability

$${}_{s}p_{\eta+t}=e^{-\int_{0}^{s}\mu_{\eta}(t+u)du}, \quad \text{for } t,s\geq 0.$$

where μ_η denotes the force of mortality at age η

Death benefit: $g(A_{\Gamma_D}, R_{\Gamma_D})$

The policyholder is allowed to surrender the contract at any time 0 < t < T, in which case she receives

$$(1-k_t)g(A_t,R_t),$$

i.e the value of the policy is diminished by the surrender charge $k_t g(A_t, R_t)$, where $k_t \in [0, 1]$ is a non-increasing function of time.

・ロト ・同ト ・ヨト ・ヨ

The fair value of the contract at time zero is

$$V_{0} = \sup_{0 \leq \tau \leq T} \mathsf{E}^{\mathsf{Q}} \Big[\mathbbm{1}_{\{\tau < T \land \tau^{\dagger} \land \Gamma_{D}\}} e^{-r\tau} (1 - k_{\tau}) g(\mathcal{A}_{\tau}, \mathcal{R}_{\tau}) \\ + \mathbbm{1}_{\{\tau \geq T \land \tau^{\dagger} \land \Gamma_{D}\}} e^{-r(T \land \tau^{\dagger} \land \Gamma_{D})} g(\mathcal{A}_{T \land \tau^{\dagger} \land \Gamma_{D}}, \mathcal{R}_{T \land \tau^{\dagger} \land \Gamma_{D}}) \Big]$$

with

$$g(A, R) := egin{cases} R & lpha A \leq R \ R + \gamma(lpha A - R) & lpha A \geq R \end{cases}$$

・ロト ・回 ト ・ ヨト ・ ヨ

 It gives the arbitrage-free price of the PP policy (worst case scenario for the insurer)

- It gives the arbitrage-free price of the PP policy (worst case scenario for the insurer)
- To study the sensitivity of the price respect to the relevant parameters of the model (*r*,*r^G*, δ, ...)

- It gives the arbitrage-free price of the PP policy (worst case scenario for the insurer)
- To study the sensitivity of the price respect to the relevant parameters of the model (*r*,*r^G*, δ, ...)
- To analyze the effect of the surrender charge on the optimal surrender policy (for example, find the minimal charge to eliminate the surrender incentive)

- It gives the arbitrage-free price of the PP policy (worst case scenario for the insurer)
- To study the sensitivity of the price respect to the relevant parameters of the model (*r*,*r^G*, δ, ...)
- To analyze the effect of the surrender charge on the optimal surrender policy (for example, find the minimal charge to eliminate the surrender incentive)

For the results, please see

M. B. Chiarolla, T. De Angelis and G. Stabile

An analytical study of participating policies with minum rate guarantee and surrender option.

Finance and Stochastics, 26, pages173-216 (2022).

Thank you!

æ

<ロ> <同> <同> < 同> < 同>