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Multi-state models

e Continuous time multi state models (CTMSM) are continuous
processes {Y(t),t > 0} with state space S = {1,2,...,5}.
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e Completely observed path
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e Partially observed paths. Let x; = (xj0, %1, .., Xin) be the
observed states at the times O=tjo < tj; < --- < tj ,, for the i-th

unit.
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Classes of continuous time multi-state models

e Markov models

YrsOt + 0(dt) s#£r

P{Y(t+dt) =s|Y(t) =r, Fi} _{ 1+ 7,0t +o0(0t) s=r

e semi-Markov models

. [ aqrs(u)dt + o(6t) s#Er
P{Y(t+dt)=s|Y(t)=r, T =t —u} = { 1_ Z#r gu(u)dt + o(6t) s=r

e time-inhomogeneous Markov models

Yrs(t)0t 4 o(dt) s#r

P{Y(t+0t) = s|Y(t) = r, Fi} _{ 1+ (t)ot +0(dt) s =r



MSM density

MSM over [0.T] are characterized by the r.v. (Z,5)
o Z=(Z,2,,...,2Zu) provides the ordered jump times
S5 =(51,52,...,5Mm) provides the state sequences

Thus, Y(t) < (Z,S) and for Markov MSM

pm(y) = pm(z,s) = (H pnrs> (Hv”’e 'y,d,>

e Analytical expression also for completely observed semi-Markov
and inhomogeneous Markov models

e Likelihood intractability for partially observed paths
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Death time: predictive distribution
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Mixtures of multi-state Markov models

Death time: predictive distribution
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Dirichlet Process Mixtures

Let fy be a continuous probability density function, with § € © and
let G be a probability distribution on ©. The density function of a
mixture fy with respect to G is

fely) = [ )G (o).
With a Dirichlet Process prior on the mixing distribution G, we get
a DP Mixture (DPM) model.
Let y; = (z,s); for i =1,...,n be MSM data on [0, t;]. We take

yil0; e fo,
0;1G% G

G ~ DP(MGp)

which is a DPM mixture of multi-state models .
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