

Università degli Studi di Roma “La Sapienza”

Via del Castro Laurenziano 9, 00161 Roma (RM)

T (+39) 06 49766433 F (+39) 06 4957606

www.memotef.uniroma1.it

ADVANCES IN THE COMBINATION

OF SUPERVISED CLASSIFICATION

METHODS:AN EXPERIMENTAL STUDY

Sabina Mazza

Autore (i)

Working paper n.133

October 2014

Working Paper del Dipartimento di Metodi e Modelli per l’Economia il Territorio e la Finanza

MEMOTEF

Facoltà di Economia

SAPIENZA – Università di Roma

Via del Castro Laurenziano, 9 – 00161 ROMA

Pubblicato in proprio

ISSN 2239-608X

COMITATO SCIENTIFICO

Giuseppina Bruno

Raimondo Cagiano de Azevedo

Roberta Gemmiti

Isabella Santini

Rosa Vaccaro

Margrit Wetter

I Working Paper del Dipartimento di Metodi e Modelli per l’Economia il Territorio e la

Finanza svolgono la funzione di divulgare tempestivamente, in forma definitiva o provvisoria,

i risultati delle ricerche condotte in Dipartimento. La pubblicazione dei lavori è soggetta

all’approvazione del Comitato Scientifico sentito il parere di un referee.

 ADVANCES IN THE COMBINATION OF SUPERVISED
CLASSIFICATION METHODS: AN EXPERIMENTAL STUDY

Sabina Mazza

1

ABSTRACT

In this work we were interested in investigating the predictive accuracy of one of the
most popular learning schemes for the combination of supervised classification methods:
the Stacking Technique proposed by Wolpert (1992),consolidated by Ting and Witten,
(1999) and Seewald (2002). In particular, we made reference to the StackingC (Seewald
2002) as a starting point for our analysis, to which some modifications and extensions
were made. Since most of the research on ensembles of classifiers tends to demonstrate
that this scheme can perform comparably to the best of the base classifiers as selected
by cross-validation, if not better, this motivated us to investigate the performance of the
Stacking empirically. An analysis of the results obtained by applying our Stacking
scheme - which includes differences and characteristic implementations compared to
what is proposed by the literature - to the dataset generated by means of an
experimental design, does not lead us to believe that the Stackin is preferable in terms of
performances to the use of the best single classifier. It always achieves good
performances and is to be considered among the best. On the contrary, in the case of
contaminated data, Stacking improves its performances noticeably, and generally
appears to be very competitive, above all when the contaminations are more substantial.

Classification JEL: C 13, C 14, C 38
Keywords: Supervised classification methods, Ensemble learning, Stacking, Meta-level
learning, Cross-validation

1. INTRODUCTION

In this chapter, first we describe the framework in which this work is set that
is a combination of supervised classification methods, in particular the
Stacking Technique. Then we explain the motivation, goals and purposes
and the tools and methods used to achieve them. We finally conclude with
the outline of the subsequent chapters.

1.1 Overview

Among those elements which may influence the precision and stability of a
classification method are the size and quality of the data set used for the
estimation. Even slight modifications to the data set may lead to the
construction of different models.

1
 Sabina.mazza@uniroma1.it.

This paper is based on research work on “Combination of classification methods”
supervised by Professor Giorgio Alleva.

mailto:Sabina.mazza@uniroma1.it

In order to satisfy the need for models that are more stable and more
precise in their predictions, various methods have been proposed by the
literature, based on the combination of models from the same class, among
which: Bagging (Breiman, 1996), Boosting (Freund and Schapire,1996),
Random Forest (Breiman 2001), and on others based on the combination of
predictions deriving from different supervised classification methods.

This approach is also known as an ensemble of classifiers in the
supervised classification task. The trend of studies in this direction that
starts with Stacked Generalization (Wolpert, 1992) is particularly interesting,
and is consolidated by the proposals offered by Stacking (Ting and Witten,
1999) and Stacking C (Seewald 2002), which tackle and overcome crucial
problems previously unsolved in continuity with the original theory.

This class of models aims to combine the predictions coming from a set of
different supervised classification algorithms (base-level classifiers) by
means of a meta-level classifier in order to improve performances. The main
idea behind Stacking is to use the predictions of the base classifiers as
attributes in a new training set that keeps the original class labels, and then
combine them.

The presence of outliers in the dataset, could also alter the structure of the
classification model, and cause the generation of predictions that might not
be reliable.

1.2 Goals of the Work

The proposal consolidated in the stacking framework and the relative
advances in the research on the elements that characterise this scheme for
the combination of classifiers were the starting point for this work which
intends to investigate this theme further. The idea is to explore in greater
detail some aspects that seem to be less developed in the literature and
could contribute to the introduction of further elements into the research, side
by side with those critical elements already highlighted in the report.

Most of the research on ensembles of classifiers tends to demonstrate
that Stacking can perform comparably to the best of the base classifiers as
selected by cross-validation, if not better. It is to be hoped that we can
expect that the final classifier produced by Stacking is able to achieve better
performances in terms of accuracy than the best level-0 classifier.
Otherwise the computational onus created by the complexity of the
procedure would not be justified.

This has motivated us to investigate empirically the performance of the
Stacking technique, also in terms of stability and strength, solving the
problem of the combination of supervised classified methods by using a
different approach which may be defined as innovative.
The research trend described has established the following objectives for
this work:

 Evaluation of the base-level and meta-level classifiers in terms of their
accuracy when there are modifications in the size of the data set.
 Evaluation of the effects caused by the presence of anomalous values in
the data set on the performances of the base-level and meta-level
classifiers and their comparison.
 Evaluation of the results of the simulation studies carried out to establish
whether, and to what extent, the combination of classifiers makes it possible
to improve performances compared to the use of a single classifier.

On what we might define as the traditional level, a Stacking scheme is
proposed that has some differences compared to the well-known one, both
in terms of characteristics that are already present and with regard to the
introduction of innovative elements.
In particular, with regard to the assumption at the base of the theory that
”even small changes to the training set may cause large changes in the
classifier induced by a learning algorithm”, that Breiman (1996) defined as
“instability”, referring to instable algorithms as classification trees and, taking
into account that little has been discovered about the relationship between
training dataset parameter settings and the performance of base classifiers
and meta-classifiers, we chose not to use well-known input datasets,
contained in databanks and extensively represented when dealing with
problems of supervised classification.

Since the topic of the choice of input data is, in our opinion, an important
part of the study, we chose not to use well-known datasets but rather to
carry out a wide-ranging simulation study that involved the generation of
datasets with different characteristics for the modification of the quality and
size of the estimate data. Moreover, taking into consideration the effects
that the presence of atypical observations might have on the model too, a
great deal of space has been assigned to the contamination design of the
datasets which has introduced anomalous values with varying degrees of
intensity, level and typology to allow us to explore this particular dimension
of the problem, covered very little by the literature, and to give any relative
indications.

Among the main differences from the predominant literature we find the
choice to build the Stacking procedure entirely in a Matlab environment. The
whole Stacking scheme has therefore been implemented in Matlab and built
in the form of an interlinked process which is begun by the generation of the
level-0 data in the case of the simulation study, and which includes a
complete homogenisation of the procedures relative to each of its phases in
order to guarantee uniformity and therefore comparability of the outputs
returned at every step.
This allowed us to create a flexible and powerful work tool, although it is
sometimes a little heavy in computational terms.
Since the Stacking algorithm, although included in other software (such as
the open source software WEKA), did not exist in Matlab, a code for

creating a complex structure was completely implemented, which made
possible:

 The organisation of a complex and extended experimental plan in order
to carry out a wide-ranging simulation study

 The building of a set of base classifiers and the appropriate procedure of
cross-validation for carrying out the fit, the assessment and the generation
of predictions for the formation of the input dataset for the meta-learner

 The fit and the assessment of the meta-classifier and thus the
procedures for the prediction combination and the homogeneous
processing of the results with regard to the characteristics of each method

 The creation of suitable plots

It was necessary to carry out a process of homogenisation for each step
of the procedures for all the classifiers, as we pointed out, which were
chosen voluntarily with different characteristics, in order to obtain the same
output that is indispensable for making the structure function and for the
assessment and comparability of the results.
There have been some extensions and modifications to some algorithms
compared to the implementation provided for in Matlab, respecting all the
decision rules that preside over individual functioning. Using the various
implementations and modifications of the default parameters will provide an
indication for each classifier in Chapter 3 in the Section dedicated to their
description.

1.3 Outline of Chapters

In the following Chapter 2 we present the main proposals for the Stacking
framework, giving a great deal of space to Wolpert’s and its main
extensions.

In the first place the one provided by Ting and Witten which tackles and
resolves crucial problems previously unsolved that Wolpert defined “black
art”:

 the choice of the type of attributes that represent meta-level input data
for the combiner function. They propose using the outputs represented by
the probability distributions that are derived from using a set of base-level
classifiers as level-1 data instead of the predictions of single class values as
proposed by Wolpert.

 the choice of a level-1 generaliser in order to obtain improved accuracy
using the stacked generalization method. They recommend the use of MLR
(Multi-response linear regression) as a meta- level classifier, as used by
Breiman (1996a) in a Stacked regression learning scheme, and by Le Blanc
and Tibshirami (1993). They believe that MLR is the best level-1 combiner
when compared with other learning algorithms.

Then, the Ensemble scheme proposed by Seewald is illustrated,

StackingC, which is based on reducing the dimensionality of the level-1
dataset not considering the entire probability distribution associated with
each classifier as in Ting and Witten, (1999), but rather the dataset
composed only of probability vectors expressed by each k base-level
classifier on the belonging of the unit to a defined class.

Other proposals are presented that deal above all with the choice of the

meta classifier such as that by Merz (1999) which proposes SCANN. This
uses the Stacking strategies together with correspondence analysis to
detect any correlations between the predictions of base-level classifiers, and
as the meta-level combiner a nearest neighbor method is applied to predict
unseen examples.

Those which envisage the use of different types of Meta decision trees as
meta-classifiers or those such as the contribution of Dzeroski and Zenko
(2004) who propose two extensions of Stacking, one using an extended set
of meta-level features and the other using multi-response model trees to
learn at the meta-level. Finally an interesting proposal from Reid and Grudic
(2009) which demonstrates empirically that even with a linear combination
function, regularization is necessary to reduce overfitting and increase
predictive accuracy and propose different kind of regularizations.
In Chapter 3 we describe the proposed Stacking scheme, with particular
attention to the traditional components of the Stacking process, by indicating
the main differences between the proposed and the more well-known one.
The whole procedure implemented in Matlab, the simulation study for 0-
level input data, the contamination design, the extensions and modifications
and the parameter settings implemented for each classifier and Stacking,
are illustrated.
In Chapter 4 the empirical results obtained from the application of the
proposed Stacking scheme to datasets generated by means of the
experimental design are shown. In particular, in section 4.2 the results
relative to the non-contaminated data are illustrated, in order to investigate
the effects on the performance of the base classifiers and of Stacking in the
presence of input datasets with different characteristics. In Section 4.3 the
application was carried out on simulated and contaminated data to
investigate whether the presence of outliers can affect the performances of
the base classifiers and of Stacking.
In Section 4.4 are illustrated the results obtained using three different
Stacking variants with different base-level classifier subsets built on different
datasets.
Chapter 5 concludes this work with a summary of the results and an outline
of future developments.

2. STACKING FRAMEWORK

In this chapter we first describe the Stacking framework and then we
summarize the main results of several recent studies of the Stacking
technique for the combination of supervised classification methods.

The trend of studies that starts with Stacked Generalization (Wolpert,
1992) is particularly interesting, and is consolidated by the proposals offered
by Stacking (Ting and Witten, 1999) and Stacking C (Seewald 2002), which
tackle and resolve crucial problems previously unsolved in continuity with
the original theory.

2.1 Stacked Generalisation

The aim of this ensemble learning scheme, originally proposed by Wolpert
(1992), is to combine the predictions coming from a set of different
supervised classification algorithms (level-0 models) by means of a meta-
level classifier in order to improve prediction accuracy (as opposed to
learning accuracy) as much as possible.
Test instance is first classified by each of the base classifiers. These
classifications are fed into a meta-level training set from which a meta-
classifier is produced.
The predictions of level-0 classifiers represent the attributes in a new
training set (level-1 data), which keeps the original class labels. Stacking
thus utilizes a meta-learner (level-1 model) to combine the predictions from
different base classifiers which were estimated via cross-validation on a
single data set.
There follows a brief description of the logic and the functioning of the
Stacking technique together with a diagram (figure 1) which take into
account some of the considerations made by Ting and Witten (1999) on the
Wolpert proposal.
Given a set of K learning algorithms, called level-0 generalisers by Wolpert,
and a data set :

  (,), 1,...,n nL y x n N  (1)

where ny is the target value and nx is a vector whose elements represent

the values assumed by the variables for the n-th instance.

Let L be randomly split into J roughly equal-sized parts: 1 2, ,..., JL L L .

We define :

jL and
()j

jL L L   as the test and training set for the j-th fold of J-fold

Cross Validation and,
()j

kM 

a model for k = 1,…K is induced on the

training set
()jL 

. Level-0 models.

For each vector nx belonging to
jL , the test set for the jth cross-validation

fold, let
nkz be the prediction of

()j

kM 
 on nx .

FIGURE 1. - This figure illustrates the j-fold cross-validation process in level-

0; the level-1 data set CVL at the end of this process is used to produce the

level-1 model
1M (Ting and Witten, 1999).

At the end of the cross-validation procedure, the dataset made up of the
predictions of each K model using the terminology just introduced
represents the level-1 data and is given by:

CV

L =  ,
1

(,...,), 1,...,n n Kn
y z z n N (2)

The combiner function (level-1 generaliser) is then trained on this meta-level

dataset to derive a Model
1M (level-1 model) for y as a function of the

predictions  1,..., kz z , whose output is the final classification of the units

belonging to the input vector.

Formally, the final prediction function of Stacked generalization can be
expressed by:

    k

z k z
v x cz x  for 1,2,...,k K (3)

Where
k

z
cz is a set of k predictors.

This is the model proposed by Wolpert (1992) and universally considered to
be the base model of stacked generalisation. It has been revisited and
studied in depth by several scientists such as Breiman (1996) who
demonstrated the success of stacked generalization in the setting of
ordinary regression and Le Blanc and Tibshirami (1993).
However, it is interesting to note that Wolpert himself believes that many
aspects of stacked generalization are, at present, a kind of "black art", and,
therefore have not yet been resolved.
These aspects will be dealt with and resolved subsequently in continuity
with the original theory, as we will see in the following sections.

2.2 Stacking

Ting and Witten (1999) with their Stacking learning scheme shed light on
the following aspects that Wolpert himself believed to be a kind of “black art”
in Stacked generalisation:

 the type of attributes that should be used to form level-1
data,

 the type of level-1 generaliser in order to obtain improved
accuracy using the stacked generalization method.

2.2.1 Meta level data

Ting and Witten (1999) have proposed settings for the meta classifier and
the type of meta data to be used in the field of the problems of supervised
classification such as the extension of the application of Stacked
Generalization .
They propose using the outputs represented by the probability distributions
that are derived from a set of base-level classifiers as level-1 data instead
of the predictions of single class values as proposed by Wolpert.
When returning to the notation and to the reference scheme already used to

describe Stacked generalization, if a generic model
()j

kM 
 is used to

classify an instance x belonging to
jL , and ()kiP x is the probability that x

belongs to the i-th class, the following vector:

 kn = (1()k nP x ,…, ()ki nP x ,…, ()kI nP x) (4)

represents the probabilities that the vector nx belongs to the classes 1,..,I.

assuming that classes have been returned by a single base-level classifier.

This gives the probabilities that the vector nx belongs to the class 1,..,I.

assuming that there are I classes and a set of k models with different bases.
The level 1 dataset will be composed of the aggregation of the probability
vectors generated by all k models:

'

2CVL   1(, ,... ,...,), 1,...,n n kn Kny n N    (5)

Compared to the previous ensemble scheme of Stacked generalization, the

final new model will be
2M .

2.2.2 Meta-level classifier

Ting and Witten propose the use of MLR (Multi-response linear regression)
as a meta- level classifier, as used by Breiman (1996a) in a Stacked
regression learning scheme, and by Le Blanc and Tibshirami (1993). They
believe that MLR is the best level-1 combiner when compared with other
learning algorithms; it can represent a valid starting point in the search for
the best method for meta-level learning to be used for problems in
combining the supervised classification methods such as Stacking.
Linear regression can easily be used for classification in domains with
numeric attributes. Indeed, any regression technique, linear or nonlinear, is
suitable for classification.
MLR is an adaptation of a least squares linear regression. For a
classification problem with I class values, I separated regression problems
are fitted: for each class l, a linear equation LRl is constructed to predict a
binary response variable, which has value one if the class value is l and
zero otherwise. Given a new example x to classify, LRl (x) is calculated for
all j , and the class k is predicted with maximum LRk (x).
MLR, therefore, learns a linear regression function for each class which
predicts a degree of confidence in class membership and can, after
normalization, be interpreted as class probability.

The output of the linear models, therefore, will have to be renormalized to
yield a proper class probability distribution because the membership values
they produce are not proper probabilities as they can fall outside the range
0 1.

Both Breiman (1996a) and LeBlanc & Tibshirani (1993) use the stacked

generalization method in a regression setting and report that it is necessary
to constrain the regression coefficients to be non-negative in order to
guarantee that stacked regression improves predictive accuracy.

By modifying and simplifying Wolpert’s hypothesis of Stacked
generalization, seen in section 2.2, with regard to the final predictor:

   k kv x v x , the authors underline the need to enforce the non

negativity of the coefficients k , considering the hypothesis that the

different kv , by making predictions about the same data, could be strongly

correlated and there may be no guarantee that the final (stacked) predictor
is near the range which might degrade the generalisation performance of
this learning method.

Ting and Witten (1999) have shown that non-negativity constraints on
coefficients are not necessary.

2.3 StackingC

Seewald (2002) proposed an extension of Stacking, called StackingC,
based on reducing the dimensionality of the level-1 dataset independently
of the number of classes and removing a priori irrelevant features. In order
to overcome a weakness of Stacking (Ting and Witten, 1999) in problems
with more than two classes. StackingC seems to display better
performances in terms of accuracy compared to Stacking, especially for
multi-class problems, while for two-class datasets the improvements are
more moderate, while the reduction of the size of the features makes a gain
in computational terms.
The proposed method includes the use as input for the level-1 classifier
(each linear model is associated with each of the classes), not the entire
probability distribution associated with each classifier as in Ting and Witten,
(1999), but rather the dataset composed only of probability vectors
expressed by each k base-level classifier on the belonging of the unit to a
defined class (Figure 2). In the learning scheme StackingC, therefore, each
linear model learns as input data only those partial class probabilities that it
is trying to predict.

FIGURE 2. - Level-1 data consisting only of partial probabilities given by
each base-level classifier for class=a, k level-0 classifiers and N instances
processed on the basis of the pattern proposed by Seewald (2002).

The author maintains that the probability given by one classifier for only one
class can be sufficient to guarantee the information necessary and also to
ensure a good performance, because the sum of each class probability
distribution has to be one, the probability of one class is one minus the
probability of the other class.

The use of MLR (Multi-Response Linear Regression) as a meta-level
classifier is confirmed. Seewald (2002) tries to use other combiner functions
instead of MLR, such as LWR (Locally Weighted Regression) and
MP5Prime, a model tree learner implemented in the WEKA open-source
software (Waikato Environment for Knowledge Analysis) developed at the
University of Waikato in New Zealand. Empirically he finds that for two-
class datasets MLR is the best classifier, even if the differences are
minimal.
The author believes that, in this case, the source of the improvement lies
partially in the dimensionality reduction, but more importantly in the higher
diversity of class models that are combined.

2.4 Related Work

There have been several studies on combining classification models,
including of course those on the Stacking framework.
The purpose of most of this research has been to study in depth those
aspects defined by Wolpert as “black art” and therefore a great deal of
attention has been paid to the choices in terms of meta data and meta-level
classifiers.
There are several interesting proposals and the main ones will be looked at
in brief below.

Merz (1999) proposes a method called SCANN (Stacking
Correspondence Analysis and Nearest Neighbour) that uses the strategies
of Stacking and correspondence analysis detect any correlations between
the predictions of base-level classifiers, because it is well known that the
combination of different classifiers improves the accuracy performance if
they are weakly correlated. The original meta-level feature space (the class-
value predictions) is transformed into a space of uncorrelated features. As
the meta-level combiner a nearest neighbor method is applied to predict
unseen examples. The author compares SCANN with two other stacking
schemes that have a Naïve Bayes classifier as a meta-learner and a back-
propagation trained neural network. Merz applied SCANN in this work to
classifiers that only return class value predictions and not class probability
distributions as in Stacking.

Todorovski and Dzeroski (2000) introduced a new algorithm to be used
as a level-1 classifier: the meta decision Trees (MTDs), whose leaves do
not contain class value predictions. Instead the most appropriate base level
classifier to be used for classifying the unit that falls in that leaf is indicated.

As first level dataset attributes they do not propose the use of probability
distributions, but rather their characteristics, such as entropy and maximum
probability, since they may be interpreted as estimates of the confidence of
the classifier in its predictions.

Zenko et al. (2001) report that MDTs perform slightly worse compared to
stacking with MLR. Overall, SCANN, MDTs, stacking with MLR and
SelectBest seem to perform at about the same level. It would seem natural
to expect that ensembles of classifiers induced by stacking would perform
better than the best individual base-level classifier: otherwise the extra work
of learning a meta-level classifier does not seem justified. The experimental
results, however, do not show clear evidence of this.

Todorovski and Dzeroski (2003) report that stacking with MDTs makes it
possible to exploit better than voting the differences between the base-level
classifiers and has a better performance, especially in the hypothesis in
which the mistakes made by the base level classifiers are uncorrelated. It is
also superior when compared with SCANN, and the main ensemble
methods of weak learners (especially decision trees) such as bagging and
boosting.

Dzeroski and Zenko (2004) propose two stacking extensions with MLR,
one using an extended set of meta-level features and the other using multi-
response model trees instead of MLR as meta-classifiers. Firstly, the
authors use the probabilities predicted for each class by each base classifier
as meta-level features (as proposed by Ting and Witten) but augment with
two additional sets of meta-level attributes: the probability distributions
multiplied by the maximum probability and the entropies of the probability
distributions. The results of their experiments show that there are no
significant improvements when using only these two attributes (without the
probability distributions), but when using all three sets of features at the
same time, some improvements are noticeable. The second extension
considers an alternative for MLR as meta-classifier, introducing Stacking
with multi-response model trees, because model trees have been shown to
perform better than MLR for classification via regression.

Reid and Grudic (2009) return to the need to insert constraints on
coefficients; in fact they demonstrate empirically that with a linear
combination function, regularization is necessary in order to improve
accuracy and reduce overfitting. They propose using Ridge regression,
lasso regression and elastic net regression because Stacking has a
tendency to overfit, especially when highly correlated and well-tuned
combination methods are used.

2.5 Discussion

We have outlined the main proposals of the literature that examine in depth
and extend the Stacking Technique with particular attention paid to the
choice of meta data and meta classifiers. In the work, as indicated, we will

use the Stacking C ensemble scheme as a starting point for our analysis,
but we plan to focus our attention on an exploration of the parameters, as
well as the choice of meta data and meta classifiers. We also focus on an
aspect that has been covered much less by the studies and that in our view,
however deserves special attention: the choice of the initial dataset. This is
connected to the assumption that small changes in the dataset can lead to
different models and that the presence of outliers might alter the parameters
of the model.

3. ADVANCES IN THE STACKING SCHEME

3.1 Introduction

The proposals illustrated in the previous chapter for the Stacking framework
and the relative progress made in the research on the elements that
characterize such a scheme of classifier combination are a valid starting
point for this work, which intends to investigate this topic further. The idea is
to explore in more detail some of the aspects that seem less developed and
could contribute to the introduction of further elements into the research, side
by side with the critical elements already highlighted in this work.
In the following section some of the components of the Stacking technique
will be explained, especially in the usual outlook, while in section 3.3, the
elements that are the essential aspects for constructing our Stacking model
will be introduced, with clarifications regarding the main differences
compared to the traditional formulation, both in terms of modifications in the
characteristics of elements already found and with regard to the introduction
of innovative elements.

3.2 Traditional elements of Stacking ensemble method

As we have demonstrated several times, elements traditionally considered
to be critical for dealing with problems in the combination of supervised
classification methods, and in particular in the ensemble Stacking method,
are represented by the choice of base classifiers, meta classifiers and also
by the type of meta data to be used. In our opinion, another important
aspect is the assessment of the classifiers that will be illustrated in the
section 3.2.3.
These elements will be summarized below, but it should be clear that there
will not be a thorough examination of this theme, since many other types of
learning algorithms could be used to generate base classifiers, and other
typologies of meta-classifiers, used to provide a final prediction, but usable
for describing the components that will be inserted in the Stacking process
built in this work and described in section 3.3.

3.2.1 Base Classifiers

The base classifiers that will be used to build the proposed Stacking
scheme, are methods having different characteristics because the learning
algorithms that generated them are different. We made a voluntary choice
to use classifiers in the combination that have different predictive capacities
and strengths together with different decision rules for investigating whether
the combination is able to enhance the performances of the most capable
and mitigate the weaknesses of the less able performers, and therefore
Stacking can perform comparably to the best of the individual classifiers, if
not better.

To make this treatment easier we can distinguish three categories among
the algorithms that we will use such base classifiers in to the experimental
set up:

 Parametric methods

- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- Logistic Regression
- Naive Bayes

 Non-Parametric Methods
- Classification Tree
- Support Vector Machine

 Ensemble Methods

- Bagged Classification Tree
- AdaBoost

The general formulations of the proposed algorithms will be summarised in
Appendix, while in section 3.3.3 specific implementations carried out in a
Matlab environment and relative to each algorithm will be illustrated.

3.2.2 Meta-classifiers

The most interesting of the proposed meta-classifiers are the following:

 Multi Response Linear regression (MLR)

 Ridge Regression

Multi-response Linear Regression is an adaptation of a least squares

linear regression recommended (Ting and Witten 1999) for meta-level

learning while several learning algorithms are shown not to be suitable for
this task.
For a classification problem with K class values, K separated regression
problems are fitted: for each class k , a linear equation LRk is constructed to
predict a binary response variable, which has value 1 if the class value is k ,
and 0 otherwise. Given a new example x to classify, LRk (x) is calculated for
all j , and the class k is predicted with maximum LRk (x). MLR, therefore,
learns a linear regression function for each class which predicts a degree of
confidence in class membership and can, after normalisation, be interpreted
as class probability. The output of the linear models, therefore, will have to
be renormalized to yield a proper class probability distribution because the
membership values it produces are not proper probabilities as they can fall
outside the range 0-1.

By using the cross-validated predictions  
k

f x


at x, using model m,

applied to the dataset with the ith training observation removed. The
stacking estimate of the weights is obtained from the least squares linear

regression of iy on  
1

mf x


, m=1,2,.....M.

The stacking weights are given by:

  
2

1 1

arg min
N Mst i

i m im
w i m

w y w f x


 

 
  

 
  . (6)

The final prediction then is  
st

m mm
w f x .

Hastie et al. (2009) believe that better results can be obtained by restricting
the weights to be nonnegative, and to sum to 1. This seems like a
reasonable restriction if we interpret the weights as posterior model
probabilities.

Ridge Regression

Ridge Regression, introduced by Hoerl and Kennard (1970), shrinks the

regression coefficients by imposing a penalty on their size. The ridge

coefficients minimize a penalized residual sum of squares

2

2

0

1 1 1

arg min
p pNridge

i ij j

i j j

y x j


    
  

   
     

   

   (7)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage:
the larger the value of λ, the greater the amount of shrinkage. The
coefficients are shrunk towards zero (and each other).

An equivalent way to write the ridge problem is:

2

0

1 1

arg min
pNridge

i ij

i j

y x j


  
 

 
   

 
  subject to

2

1

p

j

j

t


 (8)

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters λ in (7) and t in (8). When
there are many correlated variables in a linear regression model, their
coefficients can become poorly determined and exhibit high variance. By
imposing a size constraint on the coefficients, as in (8), this problem is

alleviated. the intercept 0 has been left out of the penalty term. The

solution to (7) can be separated into two parts, after reparametrization using

centered inputs: each
ijx gets replaced by jijx x .

We estimate 0 by
1

1 N

iy y
N

  .

The other coefficients get estimated by a ridge regression without intercept,

using the centered
ijx . Henceforth we assume that this centering has been

done, so that the input matrix X has p (rather than p + 1) columns.
Writing the criterion in (7) in matrix form,

      
T TRSS y X y X        (9)

the ridge regression solutions are easily seen to be:

  
1

ridge T TX X I X y 


  (10)

where I is the p p identity matrix. Notice that with the choice of

quadratic penalty
T  , the ridge regression solution is again a linear

function of y . The solution adds a positive constant to the diagonal of

TX X before inversion. This makes the problem nonsingular, even if
TX X

is not of full rank, and was the main motivation for ridge regression when it
was first introduced in statistics (Hastie et al. 2009). Ridge Regression is
recommended such a meta-combiner in a Stacking scheme by Le Blanc
and Tibishirami (1993), Breiman (1996) and, recently, Reid and Grudic
(2009).

3.2.3 Classifiers Assessment

The generalization performance of a learning method relates to its
prediction capability on independent test data. In classification task, we are
interested to assess the ability of a learning algorithm to generalize on

unseen data. It is common to measure a classifier’s performance in terms of
accuracy. Where:

Accuracy = 1 - generalization error rate

It is our choice to measure and compare the performances of the classifiers
based on their prediction error rate. The error rate is the proportion of
misclassified instances over a whole set of instances, and it measures the
overall performance of the classifier.
Of course one can be interested in the likely future performance on new
data, because the error rate on the training set is not likely to be a good
indicator of future performance.

   1

1
,

N

ierr i iTra L y f x
N 

  (11)

Any estimate of performance based on that data will be optimistic. Training
error consistently decreases with model complexity, typically dropping to
zero if we increase the model complexity sufficiently. However, a model with
zero training error is overfitted to the training data and will typically
generalize poorly. (Hastie et al. 2009).
Test error, or generalization error, is the prediction error on an independent

test sample given by a classification method  f X that has been estimated

from a training set. To predict the performance of a classifier on new
instances, we need to evaluate its generalization error rate on a dataset
that has not been part of the classifier’s fit. The test data must not be used
in any way to build the classifier.
When the amount of data for splitting in training and test set is limited, one
of the simplest and most popular methods for estimating prediction error is
K-fold cross-validation.
We first split the data into K roughly equal parts. Then for each k = 1, . . . ,

K, we remove the kth part from our data set and fit a model  
k

f x


.

Let Ck be the indices of observations in the kth fold. The cross-validation
estimate of the expected test error is:

  
 
  

1

1
,

N k i

i i

i

CV f L y f x
N





  . (12)

Overall, five- or tenfold cross-validation are recommended as a good
compromise: see Breiman and Spector (1992), Kohavi (1995) and Guyon et
al. (2006).

3.3 Experimental set up of our Stacking proposal

Our thesis proposes, with regard to the “traditional” approach, the following
objectives:

 Evaluation of the base-level and meta-level classifiers in terms of

their accuracy when there are modifications in the input data set

 Evaluation of the effects caused by the presence of anomalous

values in the data set on the performances of the base-level and

meta-level classifiers and their comparison

 Evaluation of the results of the simulation studies carried out to

establish whether, and to what extent, the combination of classifiers

makes it possible to improve performances compared to the use of

a single classifier.

In order to achieve these objectives we built a Stacking scheme that
includes some differences and characteristic implementations compared to
what is proposed by the literature, and these will be specifically explained
below for each element of the process.

3.3.1 Software

Among the main differences from the predominant literature we find the
choice to build the Stacking procedure entirely in a Matlab environment. [
MATLAB 7.12.0 (R2011a) and (R2011b)]. This allowed us to create a
flexible and powerful work tool, although it is sometimes a little heavy in
computational terms.

The whole Stacking scheme has therefore been implemented in Matlab
and built in the form of an interlinked process which is begun by the
generation of the level-0 data in the case of the simulation study, and which
includes a complete homogenisation of the procedures relative to each of its
phases in order to guarantee uniformity and therefore comparability of the
outputs returned at every step.

Since the Stacking algorithm, although included in other software (such as

the open source software WEKA), did not exist in Matlab, a code for
creating a complex structure was completely implemented, which made
possible:

 The organisation of a complex and extended experimental plan in

order to carry out a wide-ranging simulation study.

 The building of a set of base classifiers and the appropriate

procedure of cross-validation for carrying out the fit, the assessment

and the generation of predictions for the formation of the input

dataset for the meta-learner.

 The fit and the assessment of the meta-classifier, by means of an

appropriate cross validation procedure, and thus the procedures for

the prediction combination and the homogeneous processing of the

results with regard to the characteristics of each method.

 The creation of suitable plots.

It was necessary to carry out a process of homogenisation for each step of
the procedures for all the classifiers, as we pointed out, which were chosen
voluntarily with different characteristics, in order to obtain the same output
that is indispensable for making the structure function and for the
assessment and comparability of the results.

Of course this has also led to homogeneity for the base classifiers in the
procedures for the entire construction process for each one, to the
generation of the predicted class labels and the relative computation of the
prediction error (in this case cross validation error or extra-sample error
which represents the fraction of the misclassified observations of the test
total computed by the difference between the predicted class label and the
true class label relative to the test set), which meant, earlier in the process,
the implementation of the stratified k-fold cross-validation procedure,
constructed in the same way for all the classifiers, including those for which
this was not planned, which allowed us to achieve the same data partition in
training sets and test sets.
 Similarly, since we follow the approach of using probability distributions
generated by base classifiers as metadata (because we believe that this is
better than the predictions), but not all the selected base classifiers return
class probabilities as output, we implemented the Matlab procedure for each
classifier, in order to generate posterior probabilities (or to make
transformation from predictions to probabilities), which are indispensable for
creating meta-classifier input datasets, especially for those models which
are not predicted by default. Thus the classifiers were not chosen on the
basis of return output, but on the basis of their heterogeneity, which is a
contribution to their knowledge of the phenomenon.
With regard to the decision rules and the typical characteristics of each
algorithm, the following have been made available for each classifier, and
implemented if not already present in Matlab :

• Posterior probabilities of training
• Training error rate
• Predicted class labels
• Posterior probabilities of testing obtained through ten-fold cross-

validation
• Mechanisms for the partition and iteration of the dataset for cross

validation
• Cross validation error rate

3.3.2 Simulation study for 0-level input data

The proposals from the literature reported so far have always used well-
known datasets from the UCI learning repository for the building of Stacking
schemes (Blake and Merz 1998).

With reference to what has been pointed out several times, that is to say
that even small changes to the training set may lead to different models
and, taking into account that little has been is known about the relationship
between training dataset parameter settings and performances of base
classifiers and meta-classifiers, we chose not to use well-known datasets,
contained in databanks and used extensively for dealing with problems of
supervised classification.

The part that deals with the data is, in our opinion, an important moment in

our study, and taking this into consideration, we carried out a wide-ranging
simulation study which led to the generation of datasets with different
characteristics as follows:

For each dataset we generated two groups of nj observations; the first
group consists of a nxv matrix generated from a standard multivariate
normal population with a mean equal to μ for all variables and a covariance

matrix  . The Second Group was also generated from a multivariate

normal population, but with a mean equal to    .

We therefore imposed a different degree of separation δ between the
groups.
Furthermore, taking into consideration the effects that atypical observations
might have on the model too, we decided to build a well-organised and
complex experimental contamination design that would allow us to explore
this particular aspect of the problem, which has been paid very little
attention by the literature, and draw some conclusions.

 (1,,)

N size of the population

k number of classes

nj size of the class j k

v number of features

degree of separation among the subpopulations

prior prior probability to belong







 







to a class

Niter number of iterations

Contamination design

Typology: shift contamination
Level: proportion of contaminated data:
The contamination can be carried out on:

 only one class

 on both

Intensity: value of the constant to be added to the original data.

Both for datasets with and without contamination, each simulation in the
Stacking process is repeated in a series of 100 trials. In each trial a dataset
is generated by following the characteristics indicated in the section above.

3.3.3 Base Classifiers

The proposed Stacking scheme includes the use and subsequent
combination of a set of 13 base-level classification methods generated by
the 8 learning algorithms, as indicated in the subdivision of section 3.2.1,
whose output will be used as input data for the meta-level algorithms.

The set is therefore composed of classifiers that have been generated by

following several criteria:

- by applying different learning algorithms to a single data set
- by applying a single learning algorithm with different parameter

settings to a single data set
- in the case of multiple classifiers by applying a single learning

algorithm to the different variants of a dataset (bagging, boosting)

As we have already indicated, very few modifications were made
intentionally to their default parameter settings and the exceptions will be
included in the description of the single classifiers.
In the following part of this Section we illustrate the main parameter settings
of the base classifiers used if they are different from the default ones.

 Linear Discriminant Analysis and Quadratic Discriminant Analysis

No significant modifications were made to their default parameter settings,
but of course this is without considering what has been indicated for the
organisation of the cross validation procedure (which holds for all the
classifiers, excluding a version of Classification Tree and of Adaboost, as
we will see later), which has made it possible to return the output predicted
class labels and posterior probabilities homogeneously, and also to
compute cross validation error.

 Naive Bayes.

Since the algorithm provides support for Gaussian and Kernel distribution,
both were used in the experimental phase. In fact, it seems appropriate to
use the Gaussian distribution for features that have normal distributions in
each class, since for each dataset we had generated two groups of nj
observations consisting respectively of a nxv matrix generated from a
standard multivariate normal population. However, in the algorithm’s
training phase we also used a Kernel distribution that is appropriate for
features that have a continuous distribution. Since this requires more
computing time and more memory than the normal distribution and since in
our case the results did not seem significantly better, we preferred to use
the normal distribution of the proposed scheme.

 Classification Tree

These were used in the two versions:
- with pruning, which computes the optimal sequence of

pruned subtrees (TRE)

- without pruning, which returns the decision tree that is the

full one (TRE1)

 Bagged Tree

To estimate the prediction error of the bagged ensemble, instead of

computing predictions for each tree on its out-of-bag observations, we

average these predictions over the entire ensemble for each observation

and then compare the predicted out-of-bag class value with the true class at

this observation (as by default), and we built the cross validation procedure

on the entire dataset.

We created an ensemble of 30 bagged decision trees.

 Adaboost

We use two ensemble algorithms:
- First, (ADAm) based on AdaBoostM1 (Freund and Schapire, 1996).

The base classifier returns a discrete class label.
Weak learner = tree.
Number of ensemble learning cycles = 30

- For the second (ADA), we created a personalized function that
extends the Matlab function “adaboost”, with the implementation of
the cross validation procedure, and, for calculating posterior

probabilities extends the calibration of the output of AdaBoost. MH
proposed by Busa-Fekete et al. (2011) for multi-class problems.
Number of ensemble learning cycles=30

 Support Vector Machine (LIBSVM)

The Support Vector Machines (SVM), developed in the 1990s (Boser et al.,
1992; Cortes and Vapnik,1995) are held to be among the most effective
methods of supervised learning. They were implemented in the scheme
proposed through LIBSVM by Chang and Lin (2011), one of the most widely
used SVM software programs.
Four different implementations of the algorithm were created and for all of
them the transformation of the design matrix was implemented in a sparse
matrix, the procedure of common cross validation as for the other
classifiers, together with the computing of posterior probabilities for
extending SVM to give probability estimates (instead of only class labels as
default).

The Kernel function was chosen as a reference: RBF (Gaussian) kernel:

 
2

,
x y

K x x e
 

 , 0 

The specific implementations for each version of the algorithm are
summarised as follows:

- SVM
- Scaled SVM

The authors recommend linear scaling. We have chosen to scale
each attribute to the range [0,1]

- SVMbest
A procedure of cross validation was implemented in order to choose
the best parameters (,C ) for an RBF kernel. Various pairs of (,C )

values are tried and the one with the best cross validation accuracy
is chosen. We recommend trying exponentially growing sequences

of parametersC and  to select good ones (e.g.

5 3 15
2 2 2, ,...,C
 


15 13 3

2 2 2, ,...,
 ). Although the grid search in

cross validation is recommended, it means a great deal of
computational time, at least with the values suggested.

- scaled SVMbest
 There are the implementations for SVM best and for scaled SVM.

3.3.4 Meta-classifiers

Since we believe that both MLR and ridge regression are valid algorithms
for combining the outputs of base classifiers, we decided to use both of
them with a mechanism that establishes in a mutually exclusive way the

application of linear regression in the hypothesis in which there is no
multicollinearity for input matrix X, and of ridge regression when the
dimensionality of the meta-feature space L (L=number of base classifiers) is
greater than the effective rank of the input matrix.

 MLR (Multi-Response Linear Regression)

 Ridge Regression

The use of cross-validation on meta-data has also been envisaged for meta-
classifiers, to build and then evaluate the meta-classifier, reduces the risk of
overfitting and enables us to consider the estimate of the prediction error
given by such a process as a generalization error of the Stacking scheme.
For this part of the work, therefore, we made extensive use of cross validation,
since we use it in order to:

- build the classifiers (base and meta-level) from the training

data

- estimate the prediction error of the base classifiers and the

final model

- estimate the unknown tuning parameters (particularly for

Ridge Regression and Support Vector Machine).

However, as we have mentioned before, we preferred not to proceed with
an extreme tuning of the parameters with regard to the objective of
investigating whether the Stacking with the combination of different methods
is able to improve the performances of the classifiers, mitigating any bad
performances, especially those of the “weakest” ones.

3.3.5 Evaluating and comparing Classification Methods

The generalization errors of the base classifiers for a given input dataset
and of a meta-classifier (for a input dataset generated from partial class
probability distributions from each base classifier) are estimate by averaging
the result of 100 runs of ten-fold stratified cross validation . Cross validation
is repeated 100 times using different random seeds of the data resulting in
100 different sets of folds. The same folds are used in all experiments to
built all the base classifiers and to estimate their true errors.
It should always be remembered that even though we put together values
relative to Stacking and base classifier errors in the tables and in the
different plots, they are constructed using different typologies of input data.

A comparison can be made among Stacking schemes and for the single
Stacking scheme just to establish whether or not Stacking is the better,
worse or at least equal to the best base classifier.
Because of the variability and fluctuation of the cross validation error, the
average does not seem to be sufficient and in addition other measures are
calculated on the distribution of the cross validation errors for each classifier
and averaged over the total of the iterations carried out.

 Position indices
- Median
- Percentage of best positioning

 Indices of variability
- Standard deviation
- Median of deviations from the median
- Interquartile difference
- Range

3.4 Discussion

The state of the art in the research of the Stacking framework was a valid
starting point for this work. In this chapter we have illustrated the main
characteristics of the proposed Stacking scheme, starting from the choice of
implementing the whole Stacking scheme in the Matlab environment and
built in the form of an interlinked process which is begun by the generation
of the level-0 data in the case of the simulation study which led to the
generation of datasets with different characteristics and, furthermore, taking
into consideration the effects that atypical observations might have on the
model too, to build a well-organised and complex experimental
contamination design that would allow us to explore this particular aspect of
the problem, to which very little attention has been paid by the literature,
and to draw some conclusions. Of course, the implementation of the entire
Stacking scheme required a complete homogenisation of the procedures
relative to each of its phases in order to guarantee uniformity and therefore
a comparability of the outputs returned at every step. Furthermore, the
creation of a double procedure of cross-validation both for base and meta-
classifiers (which are represented by MLR and Ridge Regression, the use
of which is regulated by a mutually exclusive insertion mechanism where
conditions of collinearity occur), made it possible to build and evaluate
classifiers at a double level, thus reducing the risk of overfitting too.
Together with cross validation error, other measures have been included,
calculated on the error distribution of cross validation for each classifier and
for Stacking. In the following chapter ample space will be given to the
results of the application of the proposed scheme to the datasets generated
by the experimental design, contaminated and non-contaminated, and on

real datasets to empirically verify their functioning. With a view to a further
improvement of the entire proposed process, which is at the experimental
stage, the research activity will be directed towards optimising performances
and guaranteeing the reliability of the predictions for single classifiers by
modifying the setting of the parameters used in this phase.

4.EXPERIMENTAL RESULTS

In this section there is a summary of the main results obtained from the
application of the proposed Stacking scheme to datasets generated by
means of the experimental design. In particular, in section 4.2 the results
relative to the non-contaminated data are illustrated, in order to investigate
the effects on the performance of the base classifiers and of Stacking in the
presence of input datasets with different characteristics. In section 4.3 the
application was carried out on simulated and contaminated data to
investigate whether the presence of outliers can affect the performances of
the base classifiers and of Stacking. In Section 4.4 are illustrated the
results obtained using three different Stacking variants with different base-
level classifier subsets built on different datasets.
In Appendix to Chapter 4 is illustrated the application of the proposed
scheme to real data.

4.2 Simulated data

Based on the characteristics indicated in the previous chapter, datasets
have been generated with the following characteristics, which make them
different in terms of complexity and degree of separation among the groups:

N = 120; 200

1n = 60; 100

2n = 60; 100

v = 3; 5 ; 7 ; 10

 = 0.5; 1; 1.5; 2; 2.5; 3

The experimental design for a fixed scheme with 13 base-level classifiers

is used, to which we always refer for completeness. Subsequently, some
examples of level-0 data will be reported for the base-level algorithms. Ten-
fold stratified cross-validation was used on each dataset to build single
methods and estimate the prediction error of all the base-level classifiers.
Every trial process was repeated 100 times and an average of the results
was calculated in order to find the error of average cross validation for each
classifier, relative to each experiment.

The posterior probabilities of each classifier derived from the process of
cross-validation form the meta-dataset for the meta-classifier.

Ten-fold stratified cross-validation is also used, repeated 100 times, for
the meta classifiers, which are Linear regression and Ridge regression
(mutually exclusive when hypotheses of multicollinearity recur).
We are interested in investigating empirically the performances of the single
classifiers and of Stacking for datasets with different characteristics and
above all if it is convenient to use Stacking in terms of improving
performances instead of a single classifier, bearing in mind the necessary
increase in computation.
It should always be remembered that even though we put together values
relative to Stacking and base classifier errors in the tables and in the
different plots, they are constructed using different typologies of input data.

A comparison can be made among Stacking schemes and for the single
Stacking scheme just to establish whether or not Stacking is better, worse
or at least equal to the best base classifier.

An analysis of the results obtained by applying the Stacking scheme to the

set of the datasets generated by means of the experimental design does not
lead us to believe that the prediction error of the Stacking scheme is to be
considered lower than any other classifier or that, therefore, the Stacking
scheme is preferable in terms of performances to the use of the best single
classifier.
TABLE 1.- Simulated Data.Measures of the performances of the classifiers
and of the Stacking scheme. Average figures over 100 iterations. N=200,
v=10,δ=0.5

Cross

Validation
Error

Median

Cross
Validation

Error

Std.

Deviation
Cross

Validation

Error

Difference

interquartile
Cross

Validation

Error

Range

Cross
Validation

Error

MAD Cross

Validation
Error

% Best

positioning

Classifier

LDA 0,2334 0,2300 0,0315 0,0450 0,1450 0,0200 12
QDA 0,2703 0,2700 0,0398 0,0550 0,2000 0,0300 0
TRE 0,3565 0,3550 0,0418 0,0500 0,2350 0,0250 0

TRE1 0,3580 0,3600 0,0386 0,0450 0,2050 0,0250 0
BAG 0,2799 0,2800 0,0347 0,0475 0,1750 0,0250 2
ADA 0,2767 0,2800 0,0357 0,0475 0,1900 0,0250 1

ADAm 0,2764 0,2750 0,0340 0,0475 0,1500 0,0250 0
NBA 0,2353 0,2350 0,0287 0,0400 0,1200 0,0200 12
SVM 0,2443 0,2400 0,0329 0,0425 0,1500 0,0225 7

SVMscaled 0,2239 0,2200 0,0315 0,0450 0,1400 0,0200 33
SVMb 0,2443 0,2400 0,0329 0,0425 0,1500 0,0225 0
SVMbscaled 0,3497 0,2650 0,1542 0,3025 0,4650 0,0650 9

GLM 0,2313 0,2300 0,0300 0,0450 0,1400 0,0200 8
STA 0,2314 0,2350 0,0361 0,0450 0,1850 0,0225 16

It always achieves good performances and is to be considered among the
best, but it does not seem to be preferable for this type of application.

As we can see in an example summarised in Table 1, which shows the
results of the application of the Stacking scheme to the dataset obtained

from the experimental design characterised by 1 2 60n n  , 10v  ,

0.5  . It should be noted that the best positioning is always in agreement

with the lowest error.

We can appreciate a certain variability in the boxplots of error distribution in
Figure 3.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
classifiers

L
D

A

Q
D

A

T
R

E

T
R

E
1

B
A

G

A
D

A

A
D

A
m

N
B

A

S
V

M

S
V

M
s
c
a
le

d

S
V

M
b

S
V

M
b
s
c
a
le

d

G
L
M

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Box plot

FIGURE 3. - Simulated Data. Boxplots of error distribution on 13 base
classifiers and Stacking scheme. N=200, v=10,δ=0.5

On a more general level, Table 2 illustrates the results relative to the
average cross validation error for each base classifier and for Stacking for
input datasets with varying degrees of complexity and with different degrees
of separation between the two groups.

The analysis was carried out on the entire set of the generated datasets,
but for the sake of brevity we will only report the most important results. The
behaviour of scaled SVM (which represents one of the implementations
adopted for the Support Vector Machine described in Chapter 3 is
particularly interesting, as it is has the lowest error among the classifiers,
also in comparison with Stacking. Instead SVMbest does not achieve such
moderate error levels and this pushes us to improve the cross validation
procedure used for tuning the parameters.

TABLE 2. - Simulated Data. Cross validation error for each base classifier
and for Stacking for input datasets with varying degrees of complexity and
with different degrees of separation between the two groups. N=120

 δ=0.5 δ=3

 n. variables n. variables

Classifier 3 5 7 10 3 5 7 10

LDA 0,3432 0,3145 0,2738 0,2396 0,0053 0,0003 0,0001 0,0000
QDA 0,3539 0,3392 0,3123 0,2948 0,0058 0,0003 0,0002 0,0000
TRE 0,4174 0,3958 0,3807 0,3602 0,0392 0,0409 0,0428 0,0418
TRE1 0,4243 0,3980 0,3761 0,3603 0,0381 0,0397 0,0425 0,0407
BAG 0,3921 0,3586 0,3258 0,2840 0,0197 0,0101 0,0035 0,0023
ADA 0,3785 0,3553 0,3213 0,2809 0,0201 0,0193 0,0199 0,0223
ADAm 0,3795 0,3557 0,3177 0,2863 0,0206 0,0048 0,0040 0,0072
NBA 0,3509 0,3236 0,2809 0,2476 0,0050 0,0003 0,0000 0,0000
SVM 0,3436 0,3188 0,2856 0,2431 0,0058 0,0005 0,0001 0,0000
SVMscaled 0,3347 0,3032 0,2657 0,2274 0,0044 0,0002 0,0000 0,0000
SVMb 0,3436 0,3188 0,2856 0,2431 0,0058 0,0005 0,0001 0,0000
SVMbscaled 0,4033 0,4252 0,4069 0,4119 0,0428 0,0052 0,0076 0,0000
GLM 0,3427 0,3129 0,2757 0,2428 0,0092 0,0009 0,0002 0,0000
STA 0,3545 0,3237 0,2846 0,2467 0,0073 0,0012 0,0001 0,0001

Thus, by using a set of classifiers containing scaled SVM, Stacking scheme

could prove itself not to be competitive, as we can also see in Table 3 which
summarises the performances of scaled SVM and the Stacking scheme on
all the datasets generated by this part of the experimental design.

TABLE 3. - Simulated Data. Comparison between the cross validation error
given by scaled SVM and the Stacking scheme on the datasets generated
by the experimental design. N=120, different level of degree of separation
and number of variables.

 Stacking scheme SVMscaled

 n. variables n. variables

δ 3 5 7 10 δ 3 5 7 10

0,5 0,3545 0,3237 0,2846 0,2467 0,5 0,3347 0,3032 0,2657 0,2274

1 0,2095 0,1515 0,1080 0,0691 1 0,1945 0,1388 0,0971 0,0608

1,5 0,1074 0,0576 0,0316 0,0153 1,5 0,0972 0,0470 0,0245 0,0093

2 0,0507 0,0187 0,0071 0,0019 2 0,0402 0,0124 0,0042 0,0006

2,5 0,0201 0,0035 0,0012 0,0001 2,5 0,0139 0,0018 0,0006 0,0000

3 0,0073 0,0012 0,0001 0,0001 3 0,0044 0,0002 0,0000 0,0000

On going back to Table 2 we notice that apart from the above-mentioned very
good behaviour of scaled SVM, generally speaking the parametric classifiers

reach some of the best levels of accuracy, while “weak” classifiers, such as
Classification Tree and the ensemble methods such as Bagged Tree and
Adaboost achieve rather disappointing performances.

As far as the analysis of results relative to the measure that counts the

number of times an algorithm performs better than the others (over 100
iterations) is concerned, Table 4 shows that for a low level of degree of
separation, scaled SVM achieves the best relative positioning compared to
the other classifiers, while with a higher degree of separation LDA achieves
by far the best positioning.

TABLE 4. - Simulated Data. Best positioning over 100 iterations for each
classifier and Stacking scheme for different level of degree of separation
and number of variables. N=120

 δ=0.5 δ=3

 n. variables n. variables

Classifier 3 5 7 10 3 5 7 10

LDA 16 14 17 15 75 98 99 100
QDA 4 4 3 1 9 1 0 0
TRE 2 0 0 0 1 0 0 0
TRE1 1 0 0 0 0 0 0 0
BAG 1 5 3 1 2 0 0 0
ADA 7 1 1 3 3 0 1 0
ADAm 3 7 6 2 0 0 0 0
NBA 12 9 8 8 4 0 0 0
SVM 9 8 4 15 0 0 0 0
SVMscaled 22 27 27 27 3 1 0 0
SVMb 0 0 0 0 0 0 0 0
SVMbscaled 5 5 7 7 1 0 0 0
GLM 6 6 13 11 1 0 0 0
STA 12 14 11 10 1 0 0 0

This result is also confirmed for N=200. For datasets with intermediate

degrees of separation (≥1.5) the best positioning is always achieved by
LDA, above all if associated (in the lower values) with a higher complexity
due to the number of variables.
By comparing Table 2 and Table 4 (and more generally the whole set of
results), we can observe that there is not always a correspondence for the
classifiers between the best positioning achieved and the lowest value of
cross validation error achieved and also because, since we are dealing with
an average of 100 iterations, the variability of a classifier is significant in
terms of the error returned which is often very high. It may therefore happen
that classifiers with a higher variability can achieve better positioning.
This circumstance should lead to us to continue looking for more adequate
measurements (at some point combining the use of more than one index)
which are able to capture accuracy in the best possible way in terms of

estimating the prediction error returned by the single classifiers also in order
to improve the comparison with the use of a more complex scheme like
Stacking.

4.3 Simulated contaminated data

The second application of the Stacking procedure to simulated data was
carried out on datasets generated with the same characteristics as the ones
used in the previous section but they have undergone a contamination
design which included a shift contamination with different levels of
contaminated data, carried out on only one class or both and with different
values of the constant to be added to the original data. Let’s summarize the
main characteristics of the contamination design:

Level (proportion) of contaminated data: 5%; 10%; 30%
Number of classes : one; both
Value of the constant to be added: +2; +4

They were generated by means of the contamination design and about 480
datasets were analysed.

In this section we are interested in investigating empirically the

performances of the single classifiers and of Stacking for datasets upon
which a contamination has been carried out and above all in seeing if it is
convenient to use Stacking in terms of improving performances instead of a
single classifier, bearing in mind the necessary increase in computation.

In the case of contaminated data Stacking improves its performances
noticeably compared to what we have observed for non-contaminated data,
in some cases also in comparison with scaled SVM, and generally appears
to be very competitive, above all when the contaminations are more
substantial. In a set of classifiers in which there was no SVM it would be the
best for each of the analysed datasets. While scaled SVMbest achieves
cross validation error values that are always very substantial and therefore
are definitely not to be inserted with the current parameter setting (selected
by means of cross validation) in a basic set of classifiers.

It will be advisable to improve the tuning of the parameters if the decision
is taken to use it. It was inserted in order to make the analysis complete, but
because of its very bad performances, it will not be taken into account in the
comparison with the other classifiers. We will distinguish the hypotheses in
which the contamination on the total of the observations is moderate (10%)
from the hypotheses in which it is stronger (30%) and is carried out on one
or both the classes. Table 5 illustrates the results relative to the average
cross validation error for each base classifier and for Stacking for different
levels of contamination with different degrees of separation between the

groups and for different number of variables of the input datasets. The
contamination is only intended for one class: cont=+ 4. N=120.

When only one class is contaminated with a proportion of 10%, the

behaviour of Stacking is very good and is only exceeded by three
implementations of SVM. On the contrary, the effect of the contamination is
quite substantial for Linear Discriminant Analysis and Logistic Regression,
as well as for scaled SVMbest, which we have already said will no longer be
inserted into the set of classifiers, as we prefer SVM best or scaled SVM.

TABLE 5. - Simulated contaminated data. Cross validation error for 13 base
classifier and for Stacking for different levels of contamination, different
degrees of separation between the groups and for different number of
variables of the input datasets. The contamination is only intended for one
class: N=120.

 10% 30%

 δ=0.5 δ=3 δ=0.5 δ=3

 n. variables n. variables

Classifier 3 10 3 10 3 10 3 10

LDA 0,5092 0,5007 0,1211 0,1220 0,5083 0,4667 0,4667 0,4625

QDA 0,3789 0,3377 0,1210 0,1098 0,5250 0,5667 0,2240 0,1714

TRE 0,3853 0,3502 0,1456 0,1397 0,3750 0,3167 0,2416 0,2161

TRE1 0,3903 0,3502 0,1426 0,1446 0,3833 0,3500 0,2426 0,2186

BAG 0,3631 0,2708 0,1131 0,0698 0,2583 0,2583 0,2098 0,1045

ADA 0,3845 0,3618 0,1450 0,1414 0,3083 0,2750 0,2513 0,2073

ADAm 0,3531 0,3066 0,1337 0,1051 0,2583 0,2750 0,2235 0,1672

NBA 0,3945 0,3928 0,1243 0,1009 0,5000 0,5000 0,2715 0,2334

SVM 0,3073 0,2201 0,0858 0,0363 0,2250 0,1250 0,1590 0,0597

SVMscaled 0,3022 0,2067 0,0788 0,0333 0,2417 0,1167 0,1541 0,0510

SVMb 0,3073 0,2201 0,0858 0,0363 0,2250 0,1250 0,1590 0,0597

SVMbscaled 0,4873 0,4733 0,1352 0,0930 0,4917 0,4750 0,4153 0,3868

GLM 0,5072 0,4994 0,1362 0,1597 0,5083 0,4667 0,4728 0,4646

STA 0,3248 0,2145 0,0876 0,0362 0,2417 0,1167 0,1681 0,0552

By increasing the degree of separation between the groups, we find quite

uniform behaviour for the datasets with a moderate number of variables,
with the exception of SVM and Stacking, while the application to a dataset
with a higher number of variables greatly improves the performances of
Naive Bayes, of the three best implementations of SVM and of Stacking.

We will see that by contaminating only one class with a level of 30% there
will be a very clear effect on the four parametric base classifiers present in
the set and in particular on the behaviour of NBA which, in a contamination
hypothesis of 30% of the data in the presence of a low degree of separation
between the groups will return a fixed error of 0.50 for every iteration.
Stacking achieves an error level equal to that of the best classifier, which is
scaled SVM. In the presence of a higher degree of separation (δ=3), the
worst performance is given dramatically only by LDA and Logistic
Regression.
Moving on to the hypothesis of contaminating two classes, in Table 6 we
can see that with a moderate contamination and a low degree of separation
between the classes, the four parametric classifiers in any case achieve a
high level of error, although they are not among the worst.

TABLE 6. - Simulated contaminated data. Cross validation error for 13 base
classifier and for Stacking for different levels of contamination, different
degrees of separation between the groups and for different number of
variables of the input datasets. The contamination is intended for two class:
N=120. Cont=+4.

 10% 30%

 δ=0.5 δ=3 δ=0.5 δ=3

 n. variables n. variables

Classifier 3 10 3 10 3 10 3 10

LDA 0,4254 0,4583 0,0883 0,1094 0,4667 0,4583 0,3288 0,3033

QDA 0,4633 0,4873 0,0927 0,1843 0,4667 0,5750 0,3623 0,3552

TRE 0,4306 0,3973 0,1054 0,1195 0,4750 0,3833 0,1607 0,1610

TRE1 0,4303 0,3881 0,1036 0,1188 0,4417 0,3917 0,1564 0,1558

BAG 0,4002 0,3053 0,0736 0,0525 0,4250 0,3000 0,1352 0,0845

ADA 0,4109 0,3723 0,0904 0,0904 0,3917 0,3583 0,1605 0,1584

ADAm 0,3951 0,3547 0,0903 0,0748 0,4083 0,4000 0,1554 0,1368

NBA 0,4309 0,4373 0,0758 0,0509 0,5000 0,5000 0,3921 0,4523

SVM 0,3610 0,2357 0,0543 0,0268 0,3417 0,2250 0,0966 0,0383

SVMscaled 0,3479 0,2379 0,0489 0,0234 0,3667 0,2333 0,0927 0,0331

SVMb 0,3610 0,2357 0,0543 0,0268 0,3417 0,2250 0,0966 0,0383

SVMbscaled 0,4494 0,3653 0,2683 0,0712 0,5667 0,3750 0,2195 0,2116

GLM 0,4204 0,4524 0,0703 0,0873 0,4500 0,4500 0,2563 0,2689

STA 0,3532 0,2377 0,0580 0,0245 0,3667 0,2167 0,1020 0,0376

With a higher level of contamination for the two classes and a low degree of
separation between the groups, they are always among the worst, and
generally speaking none of the classifiers gives a good performance.
The behaviour of Stacking is always very interesting and overall is
preferable for (δ=0.5, v=10), thus confirming the analogous result obtained
also in the case of the contamination only of a single class in Table 5. In the
case of a higher degree of separation (δ=3), the worst performance is
achieved once again by Linear Discriminant Analysis and Logistic
Regression.
Generally speaking, based on the outcome of the experiments carried out, it
seems to be that the contamination contained by a single class causes a
deterioration in the performances of LDA and Logistic Regression, while
with a higher level of contamination this only happens with a high degree of
separation between the groups. Where there is a low degree of separation,
the worst performance will be achieved for all four of the parametric
classifiers.

TABLE 7. - Simulated contaminated data. Cross validation error for 13 base
classifier and for Stacking.

 10% 30%

 δ=0.5 δ=3 δ=0.5 δ=3

 n. variables n. variables

Classifier 3 10 3 10 3 10 3 10

LDA 0,4171 0,4443 0,0817 0,0861 0,4900 0,4659 0,3330 0,3199

QDA 0,4498 0,4807 0,0849 0,1329 0,4700 0,4792 0,3702 0,3470

TRE 0,4255 0,3592 0,0974 0,0943 0,4200 0,3419 0,1466 0,1357

TRE1 0,4215 0,3633 0,0981 0,0947 0,4450 0,3427 0,1483 0,1381

BAG 0,3990 0,2860 0,0684 0,0461 0,4750 0,2520 0,1230 0,0669

ADA 0,4017 0,3437 0,0884 0,0763 0,4000 0,3193 0,1451 0,1221

ADAm 0,3955 0,3307 0,0882 0,0656 0,4200 0,3226 0,1394 0,1148

NBA 0,4236 0,4400 0,0734 0,0505 0,5000 0,5000 0,3934 0,4556

SVM 0,3513 0,2299 0,0523 0,0234 0,3250 0,1992 0,0908 0,0330

SVMscaled 0,3489 0,2240 0,0495 0,0211 0,3400 0,1888 0,0891 0,0294

SVMb 0,3513 0,2299 0,0523 0,0234 0,3250 0,1992 0,0908 0,0330

bscaled 0,4375 0,3922 0,1483 0,0501 0,5650 0,5088 0,1987 0,1706

GLM 0,4130 0,4347 0,0649 0,0666 0,4800 0,4636 0,2562 0,2609

STA 0,3497 0,2220 0,0537 0,0231 0,3100 0,1850 0,0959 0,0316

The behaviour of Naive Bayes is particularly interesting, since at a high level
of contamination, carried out both on one class and on both using the

hypothesis of a low degree of separation, it always obtains a value equal to
0.50 which remains the same for each iteration as can be seen in Table 5
and in Table 6, so using it is not very effective.

Table 7 summarises the results relative to the average cross validation error
for each base classifier and for Stacking for different levels of contamination
(10% and 30%), different degrees of separation between the groups,
different numbers of variables of the input datasets. The contamination is
carried out on both the classes. N=200. Cont= +4.
In comparison with non-contaminated data, we can observe that Stacking
does not seem to be affected by contamination in the same way as scaled
SVM does. In fact, Stacking is the best classifier in the hypothesis with a low
degree of separation, both in the case of contamination at 10% (for v=10)
and at 30%. Instead for all the other classifiers the effect is quite
considerable, as can be seen in Figure 4 which can be compared with
Figure 3 relative to the dataset generated by the experimental design but
not contaminated.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Classifiers

L
D

A

Q
D

A

T
R

E

T
R

E
1

B
A

G

A
D

A

A
D

A
m

N
B

A

S
V

M

S
V

M
s
c
a
le

d

S
V

M
b

S
V

M
b
s
c
a
le

d

G
L
M

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

FIGURE 4. - Simulated contaminated data. Boxplots of error distribution on
13 base classifiers and Stacking scheme. N=200, v=10,δ=0.5, cont=+4,
level=30%.

4.4 Are the number and type of Base Classifiers important?

An ensemble of classifiers consists of a set of different classification
algorithms and a function to combine their individual outputs in order to
improve accuracy.
Any classifier may be used in a Stacking learning scheme and any number
of classifiers may be used.
For this work we have used a fixed scheme with 13 base-level classifiers.
In this Section, we are interested in investigating whether the performance
of Stacking may be modified if we use different base-level classifier subsets
on datasets with different characteristics.
To this end, we have created three different Stacking variants with different
base-level classifier subsets built on different datasets.
The three subsets are differentiated according to the number of classifiers
chosen and to their characteristics:

 subset I: composed of 3 classification algorithms : Tree Bagged,
AdaboostM1 and SVMbest. The relative Stacking scheme is identified
by “STA3”.

 subset II: composed of 4 classification algorithms: 2 different variants
of Classification Tree, Tree Bagged and AdaboostM1. The relative
Stacking scheme is identified by “STA4”.

 subset III: composed of 6 classification algorithms: Linear Discriminant
Analysis,Quadratic Discriminant Analysis, Tree Bagged, AdaboostM1,
Naïve Bayes Classifier and Logistic Regression. The relative Stacking
scheme is identified by “STA6”.

In the first subset there are classifiers that may be defined as “strong”, since
both Tree Bagged and Adaboost are themselves members of the ensemble
generated by applying a single learning algorithm (a classification tree,
which is considered as a “weak“ classifier) and the Support Vector Machine
(in its version with the selection of the best model through special cross
validation) has proved itself to be fairly stable for predictions.
In contrast, in the second subset there are two “weak” learning algorithms
and two very stable ones. The reason for this choice is to investigate
whether a combination of different strength classifiers can still guarantee
satisfactory performances.
For the third subset, which is much more numerous, four parametric
classifiers were chosen, two of which are popular but different linear
methods for classification tasks (Linear Discriminant Analysis and Logistic
Regression). The main difference between them is in the way the linear
function is fitted to the training data. Naïve Bayes, which is a simple method,
often tends to outperform more sophisticated algorithms when the training
set is small.

The experimental plan for the main set of base-level classifiers was used, to
which we refer for completeness. Subsequently, some examples of level-0
data will be reported for the base-level algorithms. Ten-fold stratified cross-
validation was used for all the base-level classifiers. As in the previous
experiments, at every step of cross validation, one part of the available data
was used to fit the model, and a different part was used to estimate
individual prediction error.
Every trial process was repeated 100 times and an average of the results was
calculated in order to find the error of average cross validation for each classifier
and relative to each experiment.
The posterior probabilities of each classifier derived from the process of
cross-validation form the meta dataset for the meta-classifier.
Ten-fold stratified cross-validation is also used, repeated 100 times, for the
meta classifiers, which also in this case are Linear regression and Ridge
regression (mutually exclusive when hypotheses of multicollinearity recur).
For completeness, in Appendix to Chapter 4 we show tables with the
results of some experiments relating to the performances of the base-level
classifier sets on the different dataset input and to the Stacking for different
combination schemes. Any slight differences in the performances of some
classifiers in the various schemes may be due to different partitions of the
cross validation. Stacking turns out to be competitive and better too when
compared with other classifiers, especially when there is greater complexity
in the base models, or rather when the input datasets are characterised by
one dimension larger in terms of observations and variables . The effect of
these circumstances is however accentuated when there is a high degree of
separation between the two populations.

TABLE 8. Cross validation error rate for the different Stacking schemes built.

 STA3 STA4 STA6

Base
Classifier
Input
Dataset

120_3_05 0.3547 0.3903 0.3472

120_10_05 0.2323 0.2798 0.2399

120_3_3 0.0048 0.0239 0.0066

120_10_3 0 0.0059 0

200_3_05 0.3498 0.3801 0.3450

200_10_05 0.2268 0.2732 0.2324

200_3_2 0.0434 0.0656 0.0462

200_10_2 0.0004 0.0092 0.0016

200_3_3 0.0058 0.0168 0.0016

200_10_3 0 0.0025 0

In Table 8 and in Figure 5 some results are summarised relating to the
performances of the three different Stacking schemes built with base-level
classifier sets of different sizes.

The different level-0 datasets in the first column refer to the data input with
which the base-level classifiers were built and their prediction errors and
probabilities were estimated (via cross-validation) and which form each
Stacking scheme. The input data for the meta-classifier, therefore, are
always the probabilities generated by base classifiers.
By observing the results, we can say first of all that the STA4 ensemble
classification method is the worst for any kind of dataset. The weakness of
two of the base-level classifiers was not sufficiently balanced out by the
presence of the two ensemble classifiers, which are more stable. In this
case, Stacking was unable to fully exploit the predictive capability of the
stronger classifiers to compensate for the weakness of the other two.

FIGURE 5. - Cross validation error rate for the different Stacking schemes
built and different input dataset.

As far as the other two schemes are concerned, there is very little difference
between them, although STA3 shows a higher success rate than the more
complex STA6.
This might lead us to think that the choice from the start of high performance
base-level classifiers could increase the predictive capacities of Stacking.
Furthermore, together with a greater complexity of a combination method
built with a greater number of base-level classifiers, such as STA6, there is
a better performance, also on level-0 datasets which express less
complexity in terms of the number of variables and the degree of
overlapping between the two populations in order to signify the weight
expressed by the parametric base-level classifiers in their prediction.

However, a comparison shows that STA3 is more successful (although
the differences are slight), thus representing the proposal with the best
performances, which is also economical in its combination of the presence
of classifiers with different characteristics with a lesser complexity of the
model.

4.7 Some remarks

In this chapter we have summarized the main results obtained from the
application of the proposed Stacking scheme to datasets generated by
means of the experimental design and also real data (Appendix to Chapter
4). An analysis of the results relative to the set of the datasets generated by
means of the simulation study, does not lead us to believe that the Stacking
scheme is preferable in terms of performances to the use of the best single
classifier. It always achieves good performances and is to be considered
among the best, but it does not seem to be preferable for this type of
application. In the case of contaminated data, Stacking improves its
performances noticeably compared to what we have observed for non-
contaminated data, in some cases also in comparison with scaled SVM, and
generally appears to be very competitive, above all when the
contaminations are more substantial. In a set of classifiers in which there
was no scaledSVM it would be the best for each of the analysed datasets.
The results obtained using three different Stacking variants with different
base-level classifier subsets built on different datasets show that the choice
from the start of high performance base-level classifiers could increase the
predictive capacities of Stacking, and however, a comparison shows that
the Stacking scheme with three base classifiers, is more successful
(although the differences are slight). There would seem to be a confirmation
of the circumstance that a greater complexity of the meta model does not
improve results also for the applications to real data : in fact the best
Stacking performances were achieved (at least in the examples analysed)
with schemes with a lower number of base classifiers STA3 and STA6.
We can observe, moreover, that there is not always a correspondence for
the classifiers between the best positioning achieved and the lowest value
of cross validation error achieved and also because, since we are dealing
with an average of 100 iterations, the variability of a classifier is significant in
terms of the error returned which is often very high. It may therefore happen
that classifiers with a higher variability can achieve better positioning.
Because of the variability and fluctuation of the cross validation error, the
average does not seem to be sufficient as a measurement and this
circumstance should lead to us to continue looking for more adequate
measurements (at some point combining the use of more than one index)
which are able to capture accuracy in the best possible way in terms of
estimating the prediction error returned by the single classifiers also in order

to improve the comparison with the use of a more complex scheme like
Stacking.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work we were interested to investigate the predictive accuracy of one
of the most popular learning schemes for the combination of supervised
classification methods: the Stacking Technique proposed by Wolpert (1992),
in particular, we made reference to the StackingC ensemble scheme as a
starting point for our analysis, to which some modifications and extensions
were made.

We also focus on an aspect that has been covered much less by the
studies and that in our view, however deserves special attention: the choice
of the initial dataset. This is connected to the assumption that small changes
in the dataset can lead to different models and that the presence of outliers
might alter the parameters of the model.

We were interested in investigating this aspect and in extending certain

distinct elements in the Stacking scheme, as well as examining some
characteristics neglected by the literature and also in proposing some
distinct elements of the Stacking scheme. Starting from the recent advances
proposed by the literature for the Stacking framework, the whole Stacking
scheme was therefore implemented in Matlab and built in the form of an
interlinked process which is begun by the generation of the level-0 data in
the case of the simulation study, and which includes a complete
homogenisation of the procedures relative to each of its phases in order to
guarantee uniformity and therefore comparability of the outputs returned at
every step. At the moment, of course the scheme is in an experimental
phase and will definitely have to be improved both in terms of the choice of
classifiers to be inserted in the set and of the setting of its parameters in
order to optimise performances.

Since we are interested in investigating empirically the performances of
the single classifiers and of Stacking for datasets with different
characteristics and above all if it is convenient to use Stacking in terms of
improving performances instead of a single classifier, bearing in mind the
necessary increase in computation, some applications of the proposed
scheme were carried out both on simulated and real data.

An analysis of the results obtained by applying the proposed Stacking
scheme to the set of the datasets generated by means of the experimental
design does not lead us to believe that the prediction error of the Stacking
scheme is to be considered lower than any other classifier or that, therefore,
the Stacking scheme is preferable in terms of performances to the use of
the best single classifier.

It always achieves good performances and is to be considered among the
best, but it does not seem to be preferable for this type of application, such

as Linear Discriminant Analysis and Logistic Regression, while the
behaviour of scaled SVM is particularly interesting, as it is has the lowest
error among the classifiers, also in comparison with Stacking, LDA and
Logistic Regression.

In a set of classifiers in which there was no SVM it would be the best for
each of the analysed datasets. In the case of contaminated data Stacking
improves its performances noticeably compared to what we have observed
for non-contaminated data, in some cases also in comparison with scaled
SVM, and generally appears to be very competitive, above all when the
contaminations are more substantial and especially in the presence of
strong contaminations also for both classes.
On the contrary, the effect of the contamination is quite substantial for
Linear Discriminant Analysis and Logistic Regression. Generally speaking,
based on the outcome of the experiments carried out, it seems to be that
the contamination contained by a single class causes a deterioration in the
performances of LDA and Logistic Regression, while with a higher level of
contamination this only happens with a high degree of separation between
the groups. Where there is a low degree of separation, or both classes are
contaminated, the worst performance will be achieved for all four of the
parametric classifiers.

A further element of interest in our research was whether the number and
typologies of the algorithms chosen were important for the composition of
the set of base classifiers, since the literature is quite unequivocal in
maintaining that any classifier can be used in a Stacking scheme. Different
Stacking schemes have been created for different input datasets. The main
results obtained from the application of the different Stacking schemes
show that the choice from the start of high performance base-level
classifiers could increase the predictive capacities of Stacking, and
however, a comparison shows that the Stacking scheme with three base
classifiers, is more successful (although the differences are slight). There
would seem to be a confirmation of the circumstance that a greater
complexity of the meta model does not improve results also for the
applications to real data : in fact the best Stacking performances were
achieved (at least in the examples analysed) with schemes with a lower
number of base classifiers STA3 and STA6.

As far as the application to real data is concerned, the analysis was
carried out on different datasets, and the results of one of them are
illustrated (Appendix to Chapter 4). It is a very complex dataset containing
the results of the inspection surveys carried out by INPS (National Social
Security Institute) on Italian companies in order to see if there was any off-
the-book employment present, in and it achieves error values that are
generally quite high for all classifiers, as was predictable given the level of
overlap between the groups. It is easy to guess from the structure of the

data that there are anomalous observations which are in the group
represented by the companies that declare an absence of any off-the-book
employment. Any anomalous values could give rise to signals of the
potential presence of off-the-book employment in those companies. In both
cases, however, Stacking seems competitive when compared to the use of
ensemble methods (Bagging and Adaboost), but not preferable in terms of
performances to the use of the best single classifier apart the STA 6
scheme.

With a view to a further improvement of the entire proposed process,

which is at the experimental stage, the research activity will be directed
towards optimising performances and guaranteeing the reliability of the
predictions for single classifiers by modifying the setting of the parameters
used in this phase, and more generally by including:

 Extension of the experimental design both to verify further the
results achieved and to insert other elements into the design
(different processes of data generation, increasing the number
of classes, different prior values).

 Introduction of more adequate measurements (at some point
combining the use of more than one index) which are able to
capture accuracy in the best possible way in terms of estimating
the prediction error returned by the classifiers.

 Possible introduction of a weighting system into the method of
meta-classification should we intend to combine several
classifiers with very different performances in terms of accuracy.

 Extension of the methods proposed by the literature (Varma et
al., 2006; Tibshirani et al., 2008) for the estimation and reduction
of potential bias in cross validation error for the problem that is
the object of the work.

APPENDIX to Chapter 3

This Appendix gives the traditional formalization of the four parametric
algorithms used to induce the respective base classifiers. We recall,
therefore, some notations and concepts commonly used for dealing with
classification problems

 Linear Discriminant Analysis

In a k class classification problem we need to know the class posterior

probabilities  Pr | G X for optimal classification, where X is a casual p-

dimensional variable, and G is a casual categorical variable that represents

the to which an individual belongs.

The overall population is made up of K classes and we suppose  kf x is

the class-conditional density of X in class G k , and let k be the prior

probability of class k , with
1

 1
k

k
k



 .

Therefore, the density for the overall probability is:

   
1

K

k k kk
f x f x 


 .

By application of the Bayes theorem:

1

()
Pr(/)

()

k k

k

f x
G k X x

f x






  


 (1.1)

We will have to know or evaluate from the data k and  kf x . In a

parametric context we can suppose the hypothesis that we model each

class density as multivariate Gaussian (,)p k kN   , so that the result is:

1 1() ()
2

1/2/2

1
()

(2)

Tx xk kk

k p

k

f x e
 



  




 for 1,...,k K (1.2)

Linear discriminant analysis (LDA) arises in the special case when we

assume that the classes have a common covariance matrix k k  .

The linear discriminant functions (LDA)

  
11 1 log
2

T Tx x
k k k k
         (1.3)

are an equivalent description of the decision rule,

with () argmax ().k kG x x Generally, we do not know the parameters of

the Gaussian distributions. We will need to estimate them from the data as
follows:

 /k kn n 

 /
i

k g k i kx n  

     
1

/
i

TK

k ki ik g k
x x n K 

 
      

For a two-class problem there is a correspondence between Linear
Discriminant Analysis and classification by linear least squares. The
decision rule is assigned to class 2 if

     
1 1 1

2 1 2 2 1 1 1 2

1 1
log / log /

2 2

T T
Tx n n n n     

  

       

and class 1 otherwise. Suppose we code the targets in the two classes as
+1 an -1 respectively.
With more than two classes, LDA is not the same as linear regression of the
class indicator matrix, and it avoids the masking problems associated with
that approach (Hastie et al., 1994).

 Quadratic Discriminant Analysis

If, on the other hand, the k are not assumed to be equal, from the

expression of density (1.2) we then get quadratic discriminant functions
(QDA),

   1
()

1 1
() log log

2 2

T
k kkk k kx x x   

     (1.4)

The estimates for k for QDA are similar to those for LDA, while separate

covariance matrices must be estimated for each class:

     / 1
i

T

k k kg k i i kx x n       (1.5)

Unlike the Linear Discriminant Analysis, QDA is closely linked to the
Gaussian distributive hypothesis.

 Naïve Bayes

Naïve Bayes models are a variant of the previous case, and assume that
each of the class densities are products of marginal densities; that is, they

assume that given a class G j , the features kX are independent:

    
1

p

j jk k

k

f X f X


 (1.6)

This assumption is often not true, but it simplifies the estimation.

The individual class-conditional marginal densities jkf can each be

estimated separately using one-dimensional kernel density estimates.
This is in fact a generalization of the original Naïve Bayes

procedures,which used univariate Gaussians to represent these marginals.
Naïve Bayes uses a Laplacian estimate for estimating the conditional

probabilities for each nominal attribute to compute jkf .

 For each continuous-valued attribute, a normal distribution is assumed in
which case the conditional probabilities can be conveniently represented
entirely in terms of the mean and variance of the observed values for each
class.

 Logistic Regression

The specific form of the Logistic Regression model for the posterior

probabilities  kP x via linear functions in x, while at the same time ensuring

that they sum to one and remain in [0, 1] if there are two classes is:

 

 

0

0

(1|)

1

T

T x

x
e

P G X x

e
 

 





  



 

 

0

0

(2 |)

1

T

T x

x
e

P G X x

e
 

 





  



The logit transformation in terms of  kP x is defined :  
 

log
1

p
g x

p

 
  

 

and the model has the form:

0

(1 |)
log

(2 |)

T
x

P G X x

P G X x
 

 


 
 (1.7)

The importance of this transformation is that  g x has many of the

properties of a linear regression model. The logit  g x is linear in its

parameters, may be continuous, and may range  to , depending on
the range of x.

 Bagging (Bootstrap aggregation)

Given a learning set   , , 1,...,n nL y x n N  , where the y are class

labels, we assume to build a model on it obtaining the prediction  f x at

input x.
Bootstrap aggregation (or Bagging) averages this prediction over a

collection of bootstrap samples   B
L from L.

For each bootstrap sample
 B

L we fit our model, that returns

prediction
 

 
B

f x . The bagging estimate is defined by:

  
 
 

1

1 B B

bag

b

f x f x
B 

  (1.8)

If y is a class label, let the
 

 
B

f x vote to form  bag
f x .

The
  B

L form replicate data sets, each consisting of N cases, drawn at

random, but with replacement, from L. Each  ,n ny x may appear repeated

times or not at all in any particular
 B

L .

The
  B

L are replicate data sets drawn from the bootstrap distribution

approximating the distribution underlying L.

A critical factor in whether bagging will improve accuracy is the stability of

the procedure for constructing f . If changes in L, i.e. a replicate L,

produces small changes in f , then bag
f B will be close to f . Improvement

will occur for unstable procedures where a small change in L can result in

large changes in f . (Breiman 1996).

 AdaBoost

Boosting is a general method for improving the performance of any learning

algorithm. Schapire introduced the first boosting algorithm in 1990. In 1995,

Freund and Schapire introduced the AdaBoost algorithm. In this thesis, we

refer to AdaBoostM1 (Freund and Schapire,1996).

The algorithm assumes a training set consisting of m instances

    1 1
, , ..., ,

m m
S x y x y where

i
x is a vector of attribute values and

i
y Y is

the class label associated with
i

x . The boosting algorithm call another

unspecified learning algorithm (called WeakLearn) repeatedly in a series of

rounds. The purpose of the boosting is to apply the weak learner to

repeatedly modified version of the data, producing a sequence of weak

classifiers
t

h and the predictions from all of them combined through a

weighted majority vote to give the final prediction that minimizes the error.

On round t, therefore, the booster provides WeakLearn with a distribution

t
D over the training set S and in response it computes a classifier which

should correctly classify a fraction of the training set that has large

probability with respect to . The process is carried out for 1, 2,...,t T and in

T the booster combines all weak classifiers into a final classifier
fin

h .

Algorithm AdaBoost.M1

Input:     1 1
, , ..., ,

m m
S x y x y

 WeakLearn
 T (number of iterations)

Inizialize  
1

1 / ; 1, ...,i m i mD  

For t =1 to T

1. Fit a classifier
t

h using WeakLearn and distribution
t

D

2. Compute error of
t

h :
 

 
: tt i h x yt i i

iD


 

If 0.5  then 1T t  exit Loop

3.  / 1 t
t t

   

4. Update distribution
t

D

 
   

1

1

t t t i i

t
t

ifD i h x y
i

Z otherwise
D





  
   

  

t
Z is normalization constant in order to be

1t
D


a distribution

Output the final classifier

  
 :

1
argmax log

ti h yt ixi

fin
y Y

xh






APPENDIX TO CHAPTER 4

1. APPLICATION TO REAL DATA.

This part of the work is dedicated to the application of the proposed Stacking
scheme to real data. The main results of the application of the Stacking
Scheme to the dataset will be reported below.

First of all, in connection with what we covered in the previous section,
that is to say the use of different Stacking schemes, we subjected the
dataset to the three different Stacking schemes.
In the first scheme we always used a fixed set with 13 base classifiers
STA13, which represents the scheme of reference that we applied for the
simulation study.
On the basis of the experiments performed and the above study carried out
for the thesis on the performance of different sets of classifiers, we also
decided to use the set with 6 base classifiers STA6 and the one with three
classifiers, STA3, with the same composition features reported in the

previous section.
We decided to do without STA4, which does not seem to give results that
are worse overall compared to the others.

We always used linear least squares regression as meta-classifiers and
always ridge regression with the mechanism of mutual exclusivity that has
already been described.

1.2 The dataset Off-the-book employment

The application of the proposed Stacking Scheme to real data was carried
out on a data sample taken from a dataset containing the results of the
inspection surveys carried out by INPS (National Social Security Institute)
on Italian companies in order to see if there was any off-the-book
employment present. In its original version this dataset is extensive and
rather complex, consisting of 14,651 records divided into two non-balanced
groups, and 39 variables that are both continuous and qualitative.

The data used in the analysis are taken from 230 records extracted from the
original dataset, respecting, where possible, the proportions of the data
originally present in each group, and we have selected 4 variables.

Furthermore, because of the marked level of overlap between the two
groups and the presence of collinearity between variables, these variables
have been transformed by taking logs.

1n =126

2n =104

Identification of the variables used:
Org4 = No. paid days of unskilled workers per unit of total paid day

Dim8 = Total paid days
Pers13 = employee expenses per employee (Asia)
Pers16 = Productivity per employee
Label class = Absence/Presence of the off-the-book workforce during the
last INPS inspection

Three different Stacking schemes were used for this case too:

Scheme 1) 3 base classifiers with 4 explanatory variables + LR/RR as mutually

exclusive meta-classifiers
Scheme 2) 6 base classifiers with 4 explanatory variables + LR/RR as mutually

exclusive meta-classifiers
Scheme 3) 3 base classifiers with 4 explanatory variables + LR/RR as mutually

exclusive meta-classifiers

Since the dataset does not come from our simulation plan but refers instead
to real data, and since there has also been a transformation of the original
variables, it is interesting to observe Figure 1 which shows the scatter plot
matrix.

10 12

Pers16

8 10

Pers13

4 6 8

Dim8

-4 -2 0

10

12

Org4

P
e
rs

1
6

8

10

P
e
rs

1
3

4

6

8

D
im

8

-4

-2

0

O
rg

4

Group 1

Group 2

FIGURE 1. - Off-the-book employment Data. Scatterplot matrix with bivariate
scatters of the three variables and histograms on the main diagonal. Units in
Group 1 are represented by blue crosses

Both the conditions of extensive collinearity between the variables and of
the degree of overlap between the groups seem to have improved
compared to the original situation, although the overlap remains. There do
not seem to be any variables that make a perfect separation possible
between the two groups.

We now move on to the analysis of the main results for each proposed
Stacking Scheme:

1) Scheme STA13

In the scheme made up of 13 base classifiers, as shown in Table 1 below,
the average cross validation error stays quite high for all the classifiers, as
was predictable given the level of overlap between the groups.
Having chosen to carry out the evaluation and comparison of the classifiers
by estimating cross validation (medium in this case), but also with the aim of
broadening the representation of the error distribution, we included the
calculation of other indicators which could improve our knowledge and the
plots shown above.

TABLE 1. - Off-the-book employment Data. Measurements of the
performances of the base classifiers and the Stacking scheme STA13
calculated with reference to the respective distribution of the cross validation
errors. Average values for 100 iterations.
 Cross

Validation
Error

Median

Cross
Validation

Error

Std.

Deviation
Cross

Validation

Error

Interquartile

Difference
Cross

Validation

Error

Range

Cross
Validation

Error

MAD

Cross
Validation

Error

%

 Best
positioning

Classifier

LDA 0,4347 0,4348 0,0086 0,0087 0,0348 0,0043 2

QDA 0,4653 0,4652 0,0125 0,0174 0,0652 0,0087 0

TRE 0,4701 0,4696 0,0288 0,0413 0,1609 0,0217 0

TRE1 0,4642 0,4696 0,0307 0,0457 0,1435 0,0261 5

BAG 0,4772 0,4783 0,0224 0,0261 0,1087 0,0130 0

ADA 0,4360 0,4348 0,0192 0,0261 0,0913 0,0130 14

ADAm 0,4395 0,4348 0,0220 0,0348 0,1087 0,0152 16

NBA 0,4351 0,4348 0,0093 0,0087 0,0522 0,0043 2

SVM 0,4240 0,4217 0,0110 0,0130 0,0609 0,0087 17

SVMscaled 0,4236 0,4217 0,0129 0,0130 0,0565 0,0087 21

SVMb 0,4240 0,4217 0,0110 0,0130 0,0609 0,0087 0

SVMbscaled 0,4299 0,4304 0,0132 0,0217 0,0609 0,0087 9

GLM 0,4318 0,4304 0,0081 0,0130 0,0391 0,0043 0

STA 0,4417 0,4435 0,0286 0,0391 0,1391 0,0217 14

When comparing the performance achieved by Stacking with those of some
base classifiers (Linear Discriminant Analysis, Adaboost, Support Vector
Machine, and Logistic Regression) it does not seem to be competitive

compared to the use of a single classifier. However, it should be noted that,
although Stacking has quite a modest result in terms of accuracy, it
manages to achieve quite an interesting result in terms of best positioning (it
was the best in 14% of the iterations) which is higher than classifiers
characterised by lower average values for cross validation error. With
regard to this, Figure 2 and Figure 3 show the presence of a certain
variability in the error distribution for some classifiers on the total of the
iterations.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

1 2 3 4 5 6 7 8 9 10 11 12 13 14
classifiers

L
D

A

Q
D

A

T
R

E

T
R

E
1

B
A

G

A
D

A

A
D

A
m

N
B

A

S
V

M

S
V

M
s
c
a
le

d

S
V

M
b

S
V

M
b
s
c
a
le

d

G
L
M

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Box plot

FIGURE 2. - Off-the-book employment Data. Boxplots of error distribution of
13 base classifiers and Stacking scheme. Over 100 iterations.

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

Number of iterations

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Confronto fra cv error dei classificatori

LDA

QDA

TRE

NBA

ADA

SVM

SVMb

GLM

TRE1

BAG

ADAm

SVMscaled

SVMbscaled

STA

FIGURE 3. - Off-the-book employment Data. Comparison of cross-validation
error of 13 base classifiers and Stacking scheme. Over 100 iterations.

In this sense, examples are represented by Stacking and by the
Classifcation Tree, which achieve respectively the minimum and maximum
values (compared to the other classifiers) of cross validation error in some
iterations.

2) Scheme STA6

In the scheme with 6 base classifiers, the average cross validation error for
Stacking is lower than any other single classifier and its performance is the
best in terms of the number of times when it was the best classifier for the
total of iterations carried out, as we can see in Table 2 below.

TABLE 2. - Off-the-book employment Data. Measurements of the
performances of six base classifiers and the Stacking scheme STA6,
calculated with reference to the respective distribution of the cross validation
errors. Average values for 100 iterations.

 Cross

Validation
Error

Median

Cross
Validation

Error

Std.

Deviation
Cross

Validation

Error

Interquartile

Difference
Cross

Validation

Error

Range

Cross
Validation

Error

MAD

Cross
Validation

Error

%

Best
positioning

Classifier

LDA 0,4342 0,4348 0,0091 0,0130 0,0565 0,0043 16

QDA 0,4609 0,4609 0,0153 0,0174 0,1043 0,0087 2

BAG 0,4704 0,4696 0,0221 0,0261 0,1435 0,0130 2

ADA 0,4361 0,4348 0,0184 0,0217 0,1217 0,0130 22

NBA 0,4336 0,4348 0,0094 0,0130 0,0696 0,0043 15

GLM 0,4331 0,4348 0,0095 0,0130 0,0565 0,0087 8

STA 0,4309 0,4304 0,0243 0,0304 0,1478 0,0174 35

It would seem, therefore, that this combination of classifiers is the one that

best expresses the predictive capacities of Stacking in terms of accuracy. In
this case too, as shown in Figure 4, Stacking is characterised by a certain
variability compared to the others, even though the average and median
values for cross validation error are the lowest.

The fluctuations in cross validation error compared to some classifiers for
the total number of iterations, especially for Stacking and Bagging, are
shown in Figure 5.

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

1 2 3 4 5 6 7
classifiers

L
D

A

Q
D

A

B
A

G

A
D

A

N
B

A

G
L
M

S
T

A

C
ro

s
s
 v

a
li
d
a
ti
o
n
 e

rr
o
r

FIGURE 4. – Off-the-book employment Data. Boxplots of error distribution of
six base classifiers and STA6 scheme. Over 100 iterations.

This variability is, of course, characterised by the fact of achieving minimum
values for the former and maximum values for the latter, compared with the
other classifiers which, on the contrary, appear to have quite moderate
fluctuations.

0 10 20 30 40 50 60 70 80 90 100
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of iterations

C
ro

s
s
 v

a
li
d
a
ti
o
n
 e

rr
o
r

Comparison of cv error of classifiers

LDA

QDA

BAG

ADA

NBA

GLM

STA

FIGURE 5. - Off-the-book employment Data. Comparison of cross-validation
error of six base classifiers and STA6 scheme. Over 100 iterations.

3) STA3

In the scheme with three base classifiers, Stacking seems competitive when
compared to the use of ensemble methods (Bagging and Adaboost), but not
preferable to the use of the Support Vector Machine which has a lower error
rate in the classification.

TABLE 3. - Off-the-book employment Data. Measurements of the
performances of three base classifiers and the Stacking scheme STA3,
calculated with reference to the respective distribution of the cross validation
errors. Average values for 100 iterations.

Cross

Validation
Error

Median

Cross
Validation

Error

Std.

Deviation
Cross

Validation

Error

Interquartile

Difference
Cross

Validation

Error

Range

Cross
Validation

Error

MAD

Cross
Validation

Error

%

Best
positioning

Classifier

BAG 0,4667 0,4652 0,0252 0,0304 0,1304 0,0174 1

ADA 0,4352 0,4348 0,0207 0,0261 0,0957 0,013 28

SVMb 0,4243 0,4261 0,0138 0,0174 0,0783 0,0087 51

STA 0,4311 0,4304 0,0178 0,0174 0,1000 0,0087 20

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

1 2 3 4
classifiers

B
A

G

A
D

A

S
V

M
b

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Box plot

FIGURE 6. - Off-the-book employment Data. Boxplots of error distribution of
three base classifiers and STA3 scheme. Over 100 iterations.

The variability of Stacking is more moderate compared to what we have
seen in previous schemes and compared to ensemble methods, as illustrated in
Figure 6 and Figure 7.

0 10 20 30 40 50 60 70 80 90 100
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Number of iterations

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Comparison of cv error of classifiers

ADA

SVMb

BAG

STA

FIGURE 7. - Off-the-book employment Data. Comparison of cross-validation
error of three base classifiers and STA3 scheme. Over 100 iterations.

If we summarise some of the main results obtained in terms of the Stacking
scheme’s performance, using subsets of base classifiers of different sizes
and typologies, for real datasets and simulated data, we can then analyse
the following Table 4.

TABLE 4.- Off-the-book employment Data. Cross validation average error
rate for different Stacking schemes and different base-level datasets.

 STA3 STA6 STA13

Input Data 0-level

120_3_05 0,3547 0,3472 0,3545

120_10_05 0,2323 0,2399 0,2467

120_3_3 0,0048 0,0066 0,0073

120_10_3 0 0 0,0001

200_3_05 0,3498 0,3450 0,3475

200_10_05 0,2268 0,2324 0,2314

200_3_2 0,0434 0,0462 0,0465

200_10_2 0,0004 0,0016 0,0016

200_3_3 0,0058 0,0016 0,0070

200_10_3 0 0 0

Off-the-book 0,4311 0,4309 0,4417

There would seem to be a confirmation of the circumstance that a greater
complexity of the meta model does not improve results: in fact the best
Stacking performances were achieved (at least in the examples analysed)
with schemes with a lower number of base classifiers STA3 and STA6. We
did not take the STA4 scheme into consideration, because with respect to a
low second level complexity, it recorded very bad performances due to the
weight of the “weak” component among its classifiers.
STA13 achieves the same level of performances as the other two schemes
only with the hypothesis that both the degree of complexity and the degree
of separation between the groups are at a maximum in the base-level input
datasets.

REFERENCES

Boser , B.E., Guyon I., and Vapnik V. (1992), A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, 144-152. ACM Press

Blake, C. L., Keogh, E., Merz, C. (1998), UCI repository of machine learning
databases. Department of Information and Computer Science, University of
California at Irvine, Irvine CA.

Breiman, L., J. Friedman, R. Olshen, and C. Stone, (1984) Classification and
Regression Trees. Boca Raton, FL: CRC Press.

Breiman, L., (1996), Bagging Predictors. Machine Learning, Vol. 24, No. 2, pp. 123-
140.

Breiman, L., (1996a), Stacked Regressions. Machine Learning, Vol. 24, pp. 49-64.

Breiman, L. (2001). Random forests, Machine Learning 45: 5–32.

Breiman, L. and Spector, P. (1992). Submodel selection and evaluation in
regression: the X random case, International Statistical Review 60: 291–319.

Busa-Fekete R., Kégl B., Elteto t., Szarvas G. (2011), Ranking by calibrated
AdaBoost. JMLR: Workshop and Conference Proceedings 14, 37-48.

Chang C. and Lin C., (2001), LIBSVM, a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cortes C., and Vapnik V. (1995), Support Vector network. Machine Learning, 20.
273-297.

Demsar J., Statistical Comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1-30.

Dietterich, T. G. (1998), Approximate statistical test for comparing supervised
classification learning algorithms. Neural Computation, 107, 1895–1923.

Dietterich, T. G. (2000), Ensemble methods in machine learning. In Proceedings of
the First International Workshop on Multiple Classifier Systems (pp. 1–15). Berlin,
Springer.

Dzeroski, S., and Zenko, B. (2004), Is combining classifiers better than selecting the
best one? In Proceedings of the Nineteenth International Conference on Machine
Learning, San Francisco: Morgan Kaufmann.

Dzeroski, S., and Zenko, B. (2002), Stacking with multi-response model trees. In
Multiple Classifiers Systems,Proceedings of the Third International Workshop,
Berlin, Springer

Freund, Y. and Schapire R.E. (1996), Experiments with a new boosting algorithm,
Proceedings of the International Conference on Machine Learning, pages 148-156,
Morgan Kaufmann, San Francisco.

Guyon I., et. al. (2006), Performance prediction challenge. International Joint
Conference on Neural Networks. Vancouver, Canada

Hastie, T., Tibshirani, R., Friedman, J. (2003), The Elements of Statistical Learning.
Springer, Heidelberg (2003)

Hastie T., Tibshirani R., and J. Friedman, (2009), The elements of statistical
learning (2

nd
 ed.). New York, Springer-Verlag.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Hoerl, A. E. and Kennard, R. (1970). Ridge regression: biased estimation for non
orthogonal problems, Technometrics 12: 55–67.

Kohavi R. (1995), A study of cross-validation and Bootstrap for accuracy estimation
and model selection. International Joint Conference on Artificial Intelligence.

Kuncheva, L.I., (2004), Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, Hoboken.

LeBlanc, M., and Tibshirani R., (1993), Combining Estimates in Regression and
Classification. In Technical Report 9318. Department of Statistics, University of
Toronto.

Mardia, K., Kent, J. and Bibby, J. (1979). Multivariate Analysis, Academic Press.

Merz, C. J. (1999), Using correspondence analysis to combine classifiers. Machine
Learning, 36:1/2, 33–58.

Reid S., and Grudic G. (2009), Regularized linear Models in Stacked
Generalization. In Beneditksson J.A., et. al (Eds): MCS 2009, LNCS 5519, 112-121

Roli F., Giacinto G., and Vernazza G., (2001), Methods for designing multiple
classifier systems. In MCS '01: Proceedings of the Second International Workshop
on Multiple Classifier Systems, pages 78-87, London, UK, Springer-Verlag.

Schaffer, C., (1993), Selecting a classification method by cross-validation. Machine
Learning 13(1) (1993) 135–143.

Seewald A.K. (2002), How to make Stacking better and faster while also taking care
of an unknown weakness. In Proceedings of the 19

th
 International Conference on

Machine Learning, ICML-2002. Morgan Kaufmann Publisher, San Francisco.

Seewald A.K. (2002a), Exploring the Parameter State Space of Stacking, in
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM-
2002), Maebashi City, Japan.

Tibshirami R.J., and Tibshirami R., (2009), A Bias correction for the minimum error
rate in cross-validation. The Annals of Applied Statistics, Vol. 3, No. 2, 822-829.

Ting K. and Witten I., (1997), Stacked generalization: when does it work? In
Proceedings of the International Joint Conference on Artificial Intelligence.

Ting, K. M. and Witten, I. H. (1999), Issues in stacked generalization. Journal of
Artificial Intelligence Research 10, pages 271-289.

Todorovski, L., & Dzeroski, S. (2000), Combining multiple models with meta
decision trees. In Proceedings of the Fourth European Conference on Principles of
Data Mining and Knowledge Discovery (pp. 54–64). Berlin, Springer.

Todorovski, L., & Dzeroski, S. (2003), Combining classifiers with meta decision
trees. Machine Learning, 50:3, 223–249.

Varma S., and Simon R., (2006), Bias in error estimation when using cross-
validation for model selection. BMC Bioinformatics, 91

Witten I.H., Frank E. and Hall M., (2011), Data Mining. Practical Machine Learning
Tools and Techniques. Third Edition. Morgan Kaufmann

Wolpert, D.H. (1992), Stacked Generalization. Neural Networks, Vol. 5, pp. 241-
259, Pergamon Press.

Zenko, B., & Dzeroski, S. (2002), Stacking with an extended set of meta-level
attributes and MLR. In Proceedings of the Thirteenth European Conference on
Machine Learning, pp. Berlin, Springer.

Zenko, B., Todorovski, L., & Dzeroski, S. (2001), A comparison of stacking with
MDTs to bagging, boosting, and other stacking methods. In Proceedings of the First
IEEE International Conference on Data Mining (pp. 669–670). Los Alamitos, IEEE
Computer Society.

