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ABSTRACT  
 

In this work we were interested in investigating the predictive accuracy of one of the 
most popular learning schemes for the combination of supervised classification methods: 
the Stacking Technique proposed by Wolpert (1992),consolidated by Ting and Witten, 
(1999) and Seewald (2002). In particular, we made reference to the StackingC (Seewald 
2002) as a starting point for our analysis, to which some modifications and extensions 
were made. Since most of the research on ensembles of classifiers tends to demonstrate 
that this scheme can perform comparably to the best of the base classifiers as selected 
by cross-validation, if not better, this motivated us to investigate the performance of the 
Stacking empirically. An analysis of the results obtained by applying our Stacking 
scheme - which includes differences and characteristic implementations compared to 
what is proposed by the literature - to the dataset generated by means of an 
experimental design, does not lead us to believe that the Stackin is preferable in terms of 
performances to the use of the best single classifier. It always achieves good 
performances and is to be considered among the best. On the contrary, in the case of 
contaminated data, Stacking improves its performances noticeably, and generally 
appears to be very competitive, above all when the contaminations are more substantial. 
 
Classification JEL:  C 13, C 14, C 38  
Keywords: Supervised classification methods, Ensemble learning, Stacking, Meta-level 
learning, Cross-validation 

 
1. INTRODUCTION 

 
In this chapter, first we describe the framework in which this work is set that 
is a combination of supervised classification methods, in particular the 
Stacking Technique. Then we explain the motivation, goals and purposes 
and the tools and methods used to achieve them. We finally conclude with 
the outline of the subsequent chapters. 
 

 
1.1 Overview 
 

Among those elements which may influence the precision and stability of a 
classification method are the size and quality of the data set used for the 
estimation. Even slight modifications to the data set may lead to the 
construction of different models.  
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In order to satisfy the need for models that are more stable and more 
precise in their predictions, various methods have been proposed by the 
literature, based on the combination of models from the same class, among 
which: Bagging (Breiman, 1996), Boosting (Freund and Schapire,1996), 
Random Forest (Breiman 2001), and on others based on the combination of 
predictions deriving from different supervised classification methods.  

This approach is also known as an ensemble of classifiers in the 
supervised classification task. The trend of studies in this direction that 
starts with Stacked Generalization (Wolpert, 1992) is particularly interesting, 
and is consolidated by the proposals offered by Stacking (Ting and Witten, 
1999) and Stacking C (Seewald 2002), which tackle and overcome crucial 
problems previously unsolved in continuity with the original theory. 

This class of models aims to combine the predictions coming from a set of 
different supervised classification algorithms (base-level classifiers) by 
means of a meta-level classifier in order to improve performances. The main 
idea behind Stacking is to use the predictions of the base classifiers as 
attributes in a new training set that keeps the original class labels, and then 
combine them. 

The presence of outliers in the dataset, could also alter the structure of the 
classification model, and  cause the generation of predictions that might not 
be reliable. 
 
 

1.2  Goals of the Work 
 
The proposal consolidated in the stacking framework and the relative 
advances in the research on the elements that characterise this scheme for 
the combination of classifiers were the starting point for this work which 
intends to investigate this theme further. The idea is to explore in greater 
detail some aspects that seem to be less developed in the literature and 
could contribute to the introduction of further elements into the research, side 
by side with those critical elements already highlighted in the report. 

Most of the research on ensembles of classifiers tends to demonstrate 
that Stacking can perform comparably to the best of the base classifiers as 
selected by cross-validation, if not better. It is to be hoped that we can 
expect that the final classifier produced by Stacking is able to achieve better 
performances in terms of accuracy than the best level-0 classifier. 
Otherwise the computational onus created by the complexity of the 
procedure would not be justified. 

This has motivated us to investigate empirically the performance of the 
Stacking technique, also in terms of stability and strength, solving the 
problem of the combination of supervised classified methods by using a 
different approach which may be defined as  innovative. 
The research trend described has established the following objectives for 
this work: 



 Evaluation of the base-level and meta-level classifiers in terms of their 
accuracy when there are modifications in the size of the data set.  
 Evaluation of the effects caused by the presence of anomalous values in 
the data set on the performances of the base-level and meta-level 
classifiers and their comparison.  
 Evaluation of the results of the simulation studies carried out to establish 
whether, and to what extent, the combination of classifiers makes it possible 
to improve performances compared to the use of a single classifier.       
 

On what we might define as the traditional level, a Stacking scheme is 
proposed that has some differences compared to the well-known one, both 
in terms of characteristics that are already present and with regard to the 
introduction of innovative elements.   
In particular, with regard to the assumption at the base of the theory that 
”even small changes to the training set may cause large changes in the 
classifier induced by a learning algorithm”, that Breiman  (1996) defined as 
“instability”, referring to instable algorithms as classification trees and, taking 
into account that little has been discovered about the relationship between 
training dataset parameter settings and the performance of base classifiers 
and meta-classifiers, we chose not to use well-known input datasets, 
contained in databanks and extensively represented when dealing with 
problems of supervised classification.  

Since the topic of the choice of input data is, in our opinion, an important 
part of the study, we chose not to use well-known datasets but rather to 
carry out a wide-ranging simulation study that involved the generation of 
datasets with different characteristics for the modification of the quality and 
size of the estimate data. Moreover, taking into consideration the effects 
that the presence of atypical observations might have on the model too, a 
great deal of space has been assigned to the contamination design of the 
datasets which has introduced anomalous values with varying degrees of 
intensity, level and typology to allow us to explore this particular dimension 
of the problem, covered very little by the literature, and to give any relative 
indications. 

Among the main differences from the predominant literature we find the 
choice to build the Stacking procedure entirely in a Matlab environment. The 
whole Stacking scheme has therefore been implemented in Matlab and built 
in the form of an interlinked process which is begun by the generation of the 
level-0 data in the case of the simulation study, and which includes a 
complete homogenisation of the procedures relative to each of its phases in 
order to guarantee uniformity and therefore comparability of the outputs 
returned at every step. 
This allowed us to create a flexible and powerful work tool, although it is 
sometimes a little heavy in computational terms. 
Since the Stacking algorithm, although included in other software (such as 
the open source software WEKA), did not exist in Matlab, a code for 



creating a complex structure was completely implemented, which made 
possible: 

 The organisation of a complex and extended experimental plan in order 
to carry out a wide-ranging simulation study  

 The building of a set of base classifiers and the appropriate procedure of 
cross-validation for carrying out the fit, the assessment and the generation 
of predictions for the formation of the input dataset for the meta-learner  

 The fit and the assessment of the meta-classifier and thus the 
procedures for the prediction combination and the homogeneous 
processing of the results with regard to the characteristics of each method 

 The creation of suitable plots  
 

It was necessary to carry out a process of homogenisation for each step 
of the procedures for all the classifiers, as we pointed out, which were 
chosen voluntarily with different characteristics, in order to obtain the same 
output that is indispensable for making the structure function and for the 
assessment and comparability of the results.  
There have been some extensions and modifications to some algorithms 
compared to the implementation provided for in Matlab, respecting all the 
decision rules that preside over individual functioning. Using the various 
implementations and modifications of the default parameters will provide an 
indication for each classifier in Chapter  3 in the Section dedicated to their 
description. 
 
 

1.3  Outline of Chapters 
 

In the following Chapter 2 we present the main proposals for the Stacking 
framework, giving a great deal of space to Wolpert’s and its main 
extensions. 

In the first place the one provided by Ting and Witten which tackles and 
resolves crucial problems previously unsolved that Wolpert defined “black 
art”:  
 

 the choice of the type of attributes that represent meta-level input data 
for the combiner function. They propose using the outputs represented by 
the probability distributions that are derived from using a set of base-level 
classifiers as level-1 data instead of the predictions of single class values as 
proposed by Wolpert.  

 the choice of a level-1 generaliser in order to obtain improved accuracy 
using the stacked generalization method. They recommend  the use of MLR 
(Multi-response linear regression) as a meta- level classifier, as used by 
Breiman (1996a) in a Stacked regression learning scheme, and by Le Blanc 
and Tibshirami (1993). They  believe that MLR is the best level-1 combiner 
when compared with other learning algorithms. 



 
Then, the Ensemble scheme proposed by Seewald is illustrated, 

StackingC, which is based on reducing the dimensionality of the level-1 
dataset not considering the entire probability distribution associated with 
each classifier as in Ting and Witten, (1999), but rather the dataset 
composed only of probability vectors expressed by each k base-level 
classifier on the belonging of the unit to a defined class.  

 
Other proposals are presented that deal above all with the choice of the 

meta classifier such as that by Merz (1999) which proposes SCANN. This 
uses the Stacking strategies together with correspondence analysis to 
detect any correlations between the predictions of base-level classifiers, and 
as the meta-level combiner a nearest neighbor method is applied to predict 
unseen examples.  

Those which envisage the use of different types of Meta decision trees as 
meta-classifiers or those such as the contribution of Dzeroski and Zenko 
(2004) who propose two extensions of Stacking, one using an extended set 
of meta-level features and the other using multi-response model trees to 
learn at the meta-level. Finally an interesting proposal from Reid and Grudic 
(2009) which demonstrates empirically that even with a linear combination 
function, regularization is necessary to reduce overfitting and increase 
predictive accuracy and propose different kind of regularizations. 
In Chapter 3 we describe the proposed Stacking scheme, with particular 
attention to the traditional components of the Stacking process, by indicating 
the main differences between the proposed and the more well-known one. 
The whole procedure implemented in Matlab, the simulation study for 0-
level input data, the contamination design, the extensions and modifications 
and the parameter settings implemented for each classifier and Stacking, 
are illustrated. 
In Chapter 4 the empirical results obtained from the application of the 
proposed Stacking scheme to datasets generated by means of the 
experimental design are shown. In particular, in section 4.2  the results 
relative to the non-contaminated data are illustrated, in order to investigate 
the effects on the  performance of the base classifiers and of Stacking in the 
presence of input datasets with different characteristics. In Section 4.3 the 
application was carried out on simulated and contaminated data to 
investigate whether the presence of outliers can affect the performances of 
the base classifiers and of  Stacking.  
In Section 4.4 are illustrated the results obtained using three different 
Stacking variants with different base-level classifier subsets built on different 
datasets.  
Chapter 5 concludes this work with a summary of the results and an outline 
of future developments. 

 
 



2. STACKING FRAMEWORK  
 

In this chapter we first describe the Stacking framework and then we 
summarize the main results of several recent studies of the Stacking 
technique for the combination of supervised classification methods. 

The trend of studies that starts with Stacked Generalization (Wolpert, 
1992) is particularly interesting, and is consolidated by the proposals offered 
by Stacking (Ting and Witten, 1999) and Stacking C (Seewald 2002), which 
tackle and resolve crucial problems previously unsolved in continuity with 
the original theory.  
 
 

2.1 Stacked Generalisation 
 

The aim of this ensemble learning scheme, originally proposed by Wolpert 
(1992), is to combine the predictions coming from a set of different 
supervised classification algorithms (level-0 models) by means of a meta-
level classifier in order to improve prediction accuracy (as opposed to 
learning accuracy) as much as possible. 
Test instance is first classified by each of the base classifiers. These 
classifications are fed into a meta-level training set from which a meta-
classifier is produced. 
The predictions of level-0 classifiers represent the attributes in a new 
training set (level-1 data), which keeps the original class labels. Stacking 
thus utilizes a meta-learner (level-1 model) to combine the predictions from 
different base classifiers which were estimated via cross-validation on a 
single data set. 
There follows a brief description of the logic and the functioning of the 
Stacking technique together with a diagram (figure 1) which take into 
account some of the considerations made by Ting and Witten (1999) on the 
Wolpert proposal. 
Given a set of K learning algorithms, called level-0 generalisers by Wolpert, 
and a data set :  
  

                                ( , ), 1,...,n nL y x n N                                  (1) 

   

where ny  is the target value  and nx  is a vector whose elements represent 

the values assumed by the variables for the  n-th instance. 
 

Let L be randomly split into J roughly equal-sized parts: 1 2, ,..., JL L L . 

We define : 



jL and 
( )j

jL L L   as the test and  training set for the j-th fold of J-fold 

Cross Validation and, 
( )j

kM 

 
a model for k = 1,…K is induced on the 

training set 
( )jL 

. Level-0 models. 

For each vector nx belonging to 
jL , the test set for the jth cross-validation 

fold, let 
nkz be the prediction of 

( )j

kM 
 on nx .  

 

 
FIGURE 1. - This figure illustrates the j-fold cross-validation process in level-

0; the level-1 data set CVL  at the end of this process is used to produce the 

level-1 model 
1M  (Ting and Witten, 1999). 

 
At the end of the  cross-validation procedure, the dataset made up of the  
predictions of each K model using the terminology just introduced 
represents the level-1 data and is given by:  

                          
CV

L  =  ,
1

( ,..., ), 1,...,n n Kn
y z z n N                 (2) 

The combiner function (level-1 generaliser) is then trained on this meta-level 

dataset to derive a Model 
1M  (level-1 model) for y  as a function of the 

predictions  1,..., kz z , whose output is the final classification of the units 

belonging to the input vector.  
 
Formally, the final prediction function of Stacked generalization can be 
expressed by: 



                     k

z k z
v x cz x   for  1,2,...,k K                (3) 

Where 
k

z
cz  is a set of k predictors.   

This is the model proposed by Wolpert (1992) and universally considered to 
be the base model of  stacked generalisation. It has been revisited and 
studied in depth by several scientists such as Breiman (1996) who 
demonstrated the success of stacked generalization in the setting of 
ordinary regression and Le Blanc and Tibshirami (1993). 
However, it is interesting to note that Wolpert himself  believes that many 
aspects of stacked generalization are, at present, a kind of "black art", and, 
therefore have not yet been resolved.   
These aspects will be dealt with and resolved subsequently in continuity 
with the original theory, as we will see in the following sections. 
 
 

2.2 Stacking 
 

Ting and Witten (1999) with their Stacking learning scheme shed light on 
the following aspects that Wolpert himself believed to be a kind of “black art” 
in Stacked generalisation: 

 the type of attributes that should be used to form level-1 
data,  

 the type of level-1 generaliser in order to obtain improved 
accuracy using the stacked generalization method. 

 
2.2.1 Meta level data 
 

Ting and Witten (1999) have proposed settings for the meta classifier and 
the type of meta data to be used in the field of the problems of supervised 
classification such as the extension of the application of Stacked 
Generalization . 
They propose using the outputs represented by the probability distributions 
that are derived from  a set of base-level classifiers as level-1 data instead 
of the predictions of single class values as proposed by Wolpert.  
When returning to the notation and to the reference scheme already used to 

describe Stacked generalization, if a generic model 
( )j

kM 
 is used to 

classify an instance x belonging to 
jL , and ( )kiP x is the probability that x 

belongs to the i-th class,  the following vector:  
 

                      kn = ( 1( )k nP x ,…, ( )ki nP x ,…, ( )kI nP x )                  (4) 

represents the probabilities that the vector nx  belongs to the classes 1,..,I. 

assuming that classes have been returned by a single base-level classifier. 



This gives the probabilities  that the vector nx  belongs to the class 1,..,I. 

assuming that there are I classes and a set of k models with different bases.  
The level 1 dataset will be composed of the aggregation of the probability 
vectors generated by all  k models: 

                    
'

2CVL   1( , ,... ,..., ), 1,...,n n kn Kny n N               (5) 

 
Compared to the previous ensemble scheme of Stacked generalization, the 

final new model will be
2M . 

2.2.2 Meta-level classifier  
 

Ting and Witten propose the use of MLR (Multi-response linear regression) 
as a meta- level classifier, as used by Breiman (1996a) in a Stacked 
regression learning scheme, and by Le Blanc and Tibshirami (1993). They 
believe that MLR is the best level-1 combiner  when compared with other 
learning algorithms;   it can represent a valid starting point  in the search for 
the best method for meta-level learning to be used for problems in 
combining the supervised classification methods such as Stacking. 
Linear regression can easily be used for classification in domains with 
numeric attributes. Indeed, any regression technique, linear or nonlinear, is 
suitable for classification.  
MLR is an adaptation of a least squares linear regression. For a 
classification problem with I class values, I separated regression problems 
are fitted: for each class l, a linear equation LRl  is constructed to predict a 
binary response variable, which has value one if the class value is l  and 
zero otherwise. Given a new example x to classify, LRl (x) is calculated for 
all j , and the class k is predicted with maximum LRk (x). 
MLR, therefore, learns a linear regression function for each class which 
predicts a degree of confidence in class membership and can, after 
normalization, be interpreted as class probability.  

The output of the linear models, therefore, will have to be  renormalized to 
yield a proper class probability distribution because  the membership values 
they produce are not proper probabilities as they can fall outside the range 
0 1. 

 
Both Breiman (1996a) and LeBlanc & Tibshirani (1993) use the stacked 

generalization method in a regression setting and report that it is necessary 
to constrain the regression coefficients to be non-negative in order to 
guarantee that stacked regression improves predictive accuracy.   
 
By modifying and simplifying Wolpert’s hypothesis of Stacked 
generalization, seen in section 2.2, with regard to the final predictor:  

   k kv x v x , the authors underline the need to enforce the non 

negativity of the coefficients k , considering the hypothesis that the 



different kv , by making predictions about the same data, could be strongly 

correlated and there may be no guarantee that the final (stacked) predictor 
is near the range which might degrade the generalisation performance of 
this learning method. 
 
Ting and Witten (1999) have shown  that non-negativity constraints on 
coefficients are not necessary.  
 
 

2.3 StackingC 
 

Seewald (2002) proposed an extension of Stacking, called StackingC, 
based on reducing the dimensionality of the level-1 dataset  independently 
of the number of classes and removing a priori irrelevant features. In order 
to overcome a weakness of Stacking (Ting and Witten, 1999) in  problems 
with more than two classes. StackingC seems to display better 
performances in terms of accuracy compared to Stacking, especially for 
multi-class problems, while for two-class datasets the improvements are 
more moderate, while the reduction of the size of the features makes a gain 
in computational terms. 
The proposed method includes the use as input for the level-1 classifier 
(each linear model is associated with each of the classes), not the entire 
probability distribution associated with each classifier  as in Ting and Witten, 
(1999), but rather the dataset composed only of probability vectors 
expressed by each k base-level classifier on the belonging of the unit to a 
defined class (Figure 2). In the learning scheme StackingC, therefore, each 
linear model learns as input data only those partial class probabilities that it 
is trying to predict. 
 

 
 

FIGURE 2. -  Level-1 data  consisting only of partial probabilities given by 
each base-level classifier for class=a, k level-0 classifiers and N instances  
processed on the basis of the pattern proposed by Seewald (2002). 
 



The author maintains that the probability given by one classifier for only one 
class can be sufficient to guarantee the information necessary and also to 
ensure a good performance, because the sum of each class probability 
distribution has to be one, the probability of one class is one minus the 
probability of the other class.  
 

The use of MLR (Multi-Response Linear Regression) as a meta-level 
classifier is confirmed. Seewald (2002) tries to use other combiner functions 
instead of MLR, such as LWR (Locally Weighted Regression) and 
MP5Prime, a model tree learner implemented in the WEKA open-source 
software (Waikato Environment for Knowledge Analysis) developed at the 
University of Waikato in New Zealand.  Empirically he finds that for two-
class datasets MLR is the best classifier, even if the differences are 
minimal. 
The author believes that, in this case, the source of the improvement lies 
partially in the dimensionality reduction, but more importantly in the higher 
diversity of class models that are combined. 
 
 

2.4 Related Work 
 

There have been several studies on combining classification models, 
including of course those on the Stacking framework. 
The purpose of most of this research has been to study in depth those 
aspects defined by Wolpert as “black art”  and therefore a great deal of 
attention has been paid to the choices in terms of meta data and meta-level 
classifiers. 
There are several interesting proposals and the main ones will be looked at 
in brief below. 

Merz (1999) proposes a method called SCANN (Stacking 
Correspondence Analysis and Nearest Neighbour) that uses the strategies 
of Stacking and  correspondence analysis detect any correlations between 
the predictions of base-level classifiers, because it is well known that the 
combination of different classifiers improves the accuracy performance if 
they are weakly correlated. The original meta-level feature space (the class-
value predictions) is transformed into a space of uncorrelated features. As 
the meta-level combiner a nearest neighbor method is applied to predict 
unseen examples. The author compares SCANN with  two other stacking 
schemes that have a Naïve Bayes classifier as a meta-learner and a back-
propagation trained neural network. Merz applied SCANN in this work to 
classifiers that only return class value predictions and not class probability 
distributions as in Stacking. 

Todorovski  and Dzeroski (2000) introduced a new algorithm to be used 
as a level-1 classifier: the meta decision Trees (MTDs), whose leaves do 
not contain class value predictions. Instead the most appropriate base level 
classifier  to be used for classifying the unit that falls in that leaf is indicated. 



As first level dataset attributes they do not propose the use of probability 
distributions, but rather their characteristics, such as entropy and maximum 
probability, since they may be interpreted as estimates of the confidence of 
the classifier in its predictions. 

Zenko et al. (2001) report that MDTs perform slightly worse compared to 
stacking with MLR. Overall, SCANN, MDTs, stacking with MLR and 
SelectBest seem to perform at about the same level. It would seem natural 
to expect that ensembles of classifiers induced by stacking would perform 
better than the best individual base-level classifier: otherwise the extra work 
of learning a meta-level classifier does not seem justified. The experimental 
results, however, do not show clear evidence of this.  

Todorovski and Dzeroski (2003) report that stacking with MDTs makes it 
possible to exploit better than voting the differences between the base-level 
classifiers and has a better performance, especially in the hypothesis in 
which the mistakes made by the base level classifiers are uncorrelated. It is 
also superior when compared with SCANN, and the main ensemble 
methods of weak learners (especially decision trees) such as bagging and 
boosting. 

Dzeroski and Zenko (2004) propose two stacking extensions with MLR, 
one using an extended set of meta-level features and the other using multi-
response model trees instead of MLR as meta-classifiers. Firstly, the 
authors use the probabilities predicted for each class by each base classifier 
as meta-level features (as proposed by Ting and Witten) but augment with 
two additional sets of meta-level attributes: the probability distributions 
multiplied by the maximum probability and the entropies of the probability 
distributions. The results of their experiments show that there are no 
significant improvements when using only these two attributes (without the 
probability distributions), but when using all three sets of features at the 
same time, some improvements are noticeable. The second extension 
considers an alternative for MLR as meta-classifier, introducing Stacking 
with multi-response model trees, because model trees have been shown to 
perform better than MLR for classification via regression. 

Reid and Grudic (2009) return to the need to insert constraints on 
coefficients; in fact they demonstrate empirically that with a linear 
combination function, regularization is necessary in order to improve 
accuracy and reduce overfitting. They propose using Ridge regression, 
lasso regression and elastic net regression because Stacking has a 
tendency to overfit, especially when highly correlated and well-tuned 
combination methods are used. 
 
 

2.5 Discussion 
 

We have outlined the main proposals of the literature that examine in depth 
and extend the Stacking Technique with particular attention paid to the 
choice of meta data and meta classifiers. In the work, as indicated, we will 



use the Stacking C ensemble scheme as a starting point for our analysis, 
but we plan to focus our attention on an exploration of the parameters, as 
well as the choice of meta data and meta classifiers. We also focus on an 
aspect that has been covered much less by the studies and that in our view, 
however deserves special attention: the choice of the initial dataset. This is 
connected to the assumption that small changes in the dataset can lead to 
different models and that the presence of outliers might alter the parameters 
of the model.  
 
 
3. ADVANCES  IN THE STACKING SCHEME 
 
 

3.1 Introduction 
 

The proposals illustrated in the previous chapter for the Stacking framework 
and the relative progress made in the research on the elements that 
characterize such a scheme of classifier combination are a valid starting 
point for this work, which intends to investigate this topic further. The idea is 
to explore in more detail some of the aspects that seem less developed and 
could contribute to the introduction of further elements into the research, side 
by side with the critical elements already highlighted in this work. 
In the following section some of the components of the Stacking technique 
will be explained, especially in the usual outlook, while in section 3.3, the 
elements that are the essential aspects for constructing our Stacking model 
will be introduced, with clarifications regarding the main differences 
compared to the traditional formulation, both in terms of modifications in the 
characteristics of elements already found and with regard to the introduction 
of innovative elements.  
 
 

3.2  Traditional elements of Stacking ensemble method 
 

As we have demonstrated several times, elements traditionally considered 
to be critical for dealing with problems in the combination of  supervised 
classification  methods, and in particular in the ensemble Stacking method, 
are represented by the choice of base classifiers, meta classifiers and also 
by the type of meta data to be used. In our opinion, another  important 
aspect is the assessment of the classifiers that will be illustrated in the 
section 3.2.3. 
These elements will be summarized below, but it should be clear that there 
will not be a thorough examination of this theme, since many other types of 
learning algorithms could be used to generate base classifiers, and other 
typologies of meta-classifiers, used to provide a final prediction, but usable 
for describing the components that will be inserted in the Stacking process 
built in this work and described in section 3.3.  
 



 
3.2.1  Base Classifiers 

 

The base classifiers that will be used to build the proposed Stacking 
scheme, are methods having different characteristics because the learning 
algorithms that generated them are different.  We made a voluntary choice 
to use classifiers in the combination that have different predictive capacities 
and strengths together with different decision rules for investigating whether 
the combination is able to enhance the performances of the most capable 
and mitigate the weaknesses of the less able performers, and therefore 
Stacking can perform comparably to the best of the individual classifiers, if 
not better. 

 
To make this treatment easier we can distinguish three categories among 
the algorithms that we will use such base classifiers in to the experimental 
set up: 
 

 Parametric methods 

- Linear Discriminant Analysis 
- Quadratic Discriminant Analysis 
- Logistic Regression 
- Naive Bayes 

 

 Non-Parametric Methods 
- Classification Tree 
- Support Vector Machine 

 

 Ensemble Methods 

- Bagged Classification Tree 
- AdaBoost 

 
The general formulations of the proposed algorithms will be summarised  in 
Appendix, while in section 3.3.3 specific implementations carried out in a 
Matlab environment and relative to each algorithm will be illustrated.  
 
 

3.2.2  Meta-classifiers 
 

The most interesting of the proposed meta-classifiers are the following: 

 Multi Response Linear regression (MLR) 

 Ridge Regression 

Multi-response Linear Regression is an adaptation of a least squares  

linear regression recommended (Ting and Witten 1999) for meta-level 



learning while several learning algorithms are shown not to be suitable for 
this task. 
For a classification problem with K class values, K separated regression 
problems are fitted: for each class k , a linear equation LRk is constructed to 
predict a binary response variable, which has value 1 if the class value is k , 
and 0 otherwise. Given a new example x to classify, LRk (x) is calculated for 
all j , and the class k is predicted with maximum LRk (x). MLR, therefore, 
learns a linear regression function for each class which predicts a degree of 
confidence in class membership and can, after normalisation, be interpreted 
as class probability. The output of the linear models, therefore, will have to 
be  renormalized to yield a proper class probability distribution because  the 
membership values it produces are not proper probabilities as they can fall 
outside the range 0-1. 

By using the cross-validated predictions  
k

f x


at x, using model m, 

applied to the dataset with the ith training observation removed. The 
stacking estimate of the weights is obtained from the least squares linear 

regression of iy  on  
1

mf x


, m=1,2,.....M.  

The stacking weights are given by:  

                          
2

1 1

arg min
N Mst i

i m im
w i m

w y w f x


 

 
  

 
  .                (6) 

The final prediction then is  
st

m mm
w f x .  

Hastie et al. (2009) believe that better results can be obtained by restricting 
the weights to be nonnegative, and to sum to 1. This seems like a 
reasonable restriction if we interpret the weights as posterior model 
probabilities. 
 
 
Ridge Regression 
  

Ridge Regression, introduced by Hoerl and Kennard (1970), shrinks the 

regression coefficients by imposing a penalty on their size. The ridge 

coefficients minimize a penalized residual sum of squares 

            

2

2

0

1 1 1

arg min
p pNridge

i ij j

i j j

y x j


    
  

   
     

   

                 (7)                                

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: 
the larger the value of λ, the greater the amount of shrinkage. The 
coefficients are shrunk towards zero (and each other). 



An equivalent way to write the ridge problem is: 

      

2

0

1 1

arg min
pNridge

i ij

i j

y x j


  
 

 
   

 
  subject to

2

1

p

j

j

t


          (8)                   

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters λ in (7) and t in (8). When 
there are many correlated variables in a linear regression model, their 
coefficients can become poorly determined and exhibit high variance. By 
imposing a size constraint on the coefficients, as in (8), this problem is 

alleviated. the intercept  0  has been left out of the penalty term. The 

solution to (7) can be separated into two parts, after reparametrization using 

centered inputs: each 
ijx  gets replaced by jijx x  .  

We estimate 0 by 
1

1 N

iy y
N

  .  

The other coefficients get estimated by a ridge regression without intercept, 

using the centered 
ijx . Henceforth we assume that this centering has been 

done, so that the input matrix X has p (rather than p + 1) columns.  
Writing the criterion in (7) in matrix form, 

                            
T TRSS y X y X                         (9) 

 
 
the ridge regression solutions are easily seen to be: 

                                
1

ridge T TX X I X y 


                              (10) 

where I  is the p p  identity matrix. Notice that with the choice of 

quadratic penalty 
T  , the ridge regression solution is again a linear 

function of y . The solution adds a positive constant to the diagonal of 

TX X before inversion. This makes the problem nonsingular, even if 
TX X  

is not of full rank, and was the main motivation for ridge regression when it 
was first introduced in statistics (Hastie et al. 2009).  Ridge Regression is 
recommended such a meta-combiner in a Stacking scheme by Le Blanc 
and Tibishirami (1993), Breiman (1996) and, recently, Reid and Grudic 
(2009). 
 
 

3.2.3  Classifiers Assessment 
 

The generalization performance of a learning method relates to its 
prediction capability on independent test data. In classification task, we are 
interested to assess the ability of a learning algorithm to generalize on 



unseen data. It is common to measure a classifier’s performance in terms of 
accuracy. Where:  

Accuracy = 1 -  generalization error rate 
 
It is our choice to measure and compare the performances of the classifiers 
based on their prediction error rate. The error rate is the proportion of 
misclassified instances over a whole set of instances, and it measures the 
overall performance of the classifier.  
Of course one can be  interested in the likely future performance on new 
data, because the error rate on the training set is not likely to be a good 
indicator of future performance.   

                                 1

1
,

N

ierr i iTra L y f x
N 

                                 (11) 

Any estimate of performance based on that data will be optimistic. Training 
error consistently decreases with model complexity, typically dropping to 
zero if we increase the model complexity sufficiently. However, a model with 
zero training error is overfitted  to the training data and will typically 
generalize poorly. (Hastie et al. 2009). 
Test error, or generalization error, is the prediction error on an independent 

test sample given by a classification method  f X that has been estimated 

from a training set. To predict the performance of a classifier on new 
instances, we need to evaluate its  generalization error rate on a dataset 
that has not been part of the classifier’s fit. The test data must not be used 
in any way to build the classifier. 
When the amount of data for splitting in training and test set is limited, one 
of the simplest and most popular methods for estimating prediction error is 
K-fold cross-validation. 
We first split the data into K roughly equal parts. Then for each k = 1, . . . , 

K, we remove the kth part from our data set and fit a model  
k

f x


.  

Let Ck be the indices of observations in the kth fold. The cross-validation 
estimate of the expected test error is:  

                             
 
  

1

1
,

N k i

i i

i

CV f L y f x
N





  .                          (12) 

 
Overall, five- or tenfold cross-validation are recommended as a good 
compromise: see Breiman and Spector (1992), Kohavi (1995) and Guyon et 
al. (2006). 
 
 

3.3  Experimental set up of our Stacking proposal 
 

Our thesis proposes, with regard to the “traditional” approach, the following 
objectives: 



 
 Evaluation of the base-level and meta-level classifiers in terms of 

their accuracy when there are modifications in the input data set  

 Evaluation of the effects caused by the presence of anomalous 

values in the data set on the performances of the base-level and 

meta-level classifiers and their comparison  

 Evaluation of the results of the simulation studies carried out to 

establish whether, and to what extent, the combination of classifiers 

makes it possible to improve performances compared to the use of 

a single classifier.       

In order to achieve these objectives we built a Stacking scheme that 
includes some differences and characteristic implementations compared to 
what is proposed by the literature, and these will be specifically explained 
below for each element of the process. 
 
 

3.3.1 Software 
 

Among the main differences from the predominant literature we find the 
choice to build the Stacking procedure entirely in a Matlab environment. [ 
MATLAB 7.12.0 (R2011a) and (R2011b)]. This allowed us to create a 
flexible and powerful work tool, although it is sometimes a little heavy in 
computational terms. 

The whole Stacking scheme has therefore been implemented in Matlab 
and built in the form of an interlinked process which is begun by the 
generation of the level-0 data in the case of the simulation study, and which 
includes a complete homogenisation of the procedures relative to each of its 
phases in order to guarantee uniformity and therefore comparability of the 
outputs returned at every step. 

 
Since the Stacking algorithm, although included in other software (such as 

the open source software WEKA), did not exist in Matlab, a code for 
creating a complex structure was completely implemented, which made 
possible: 
 

 The organisation of a complex and extended experimental plan in 

order to carry out a wide-ranging simulation study.  

 The building of a set of base classifiers and the appropriate 

procedure of cross-validation for carrying out the fit, the assessment 

and the generation of predictions for the formation of the input 

dataset for the meta-learner.  



 The fit and the assessment of the meta-classifier, by means of an 

appropriate cross validation procedure, and thus the procedures for 

the prediction combination and the homogeneous processing of the 

results with regard to the characteristics of each method. 

 The creation of suitable plots. 

 
It was necessary to carry out a process of homogenisation for each step of 
the procedures for all the classifiers, as we pointed out, which were chosen 
voluntarily with different characteristics, in order to obtain the same output 
that is indispensable for making the structure function and for the 
assessment and comparability of the results.  

Of course this has also led to homogeneity for the base classifiers in the 
procedures for the entire construction process for each one, to the 
generation of the predicted class labels and the relative computation of the 
prediction error (in this case cross validation error or extra-sample error 
which represents the fraction of the misclassified observations of the test 
total computed by the difference between the predicted class label and the 
true class label relative to the test set), which meant, earlier in the process, 
the implementation of the stratified k-fold cross-validation procedure, 
constructed in the same way for all the classifiers, including those for which 
this was not planned, which allowed us to achieve the same data partition in 
training sets and test sets. 
  Similarly, since we follow the approach of using probability distributions 
generated by base classifiers as metadata (because we believe that this is 
better than the predictions), but not all the selected base classifiers return 
class probabilities as output, we implemented the Matlab procedure for each 
classifier, in order to generate posterior probabilities (or to make 
transformation from predictions to probabilities), which are indispensable for 
creating meta-classifier input datasets, especially for those models which 
are not predicted by default. Thus the classifiers were not chosen on the 
basis of return output, but on the basis of their heterogeneity, which is a 
contribution to their knowledge of the phenomenon. 
With regard to the decision rules and the typical characteristics of each 
algorithm, the following have been made available for each classifier, and 
implemented if not already present in  Matlab : 
 

• Posterior probabilities of training 
• Training error rate 
• Predicted class labels 
• Posterior probabilities of testing obtained through ten-fold cross-

validation 
• Mechanisms for the partition and iteration of the dataset for cross 

validation  
• Cross validation error rate 



3.3.2 Simulation study for 0-level input data 
 

The proposals from the literature reported so far have always used well-
known datasets from  the UCI learning repository for the building of Stacking 
schemes (Blake and Merz 1998).  

With reference to what has been pointed out several times, that is to say 
that even small changes to the training set may lead to different models 
and, taking into account that little has been is known about the relationship 
between training dataset parameter settings and performances of base 
classifiers and meta-classifiers, we chose not to use well-known datasets, 
contained in databanks and used extensively for dealing with problems of 
supervised classification. 

 
The part that deals with the data is, in our opinion, an important moment in 

our study, and taking this into consideration, we carried out a wide-ranging 
simulation study which led to the generation of datasets with different 
characteristics as follows:   
 
 
 
 
 
 
 
 
 
 
 
 
 
For each dataset we generated two groups of nj observations;  the first 
group consists of a nxv matrix generated from a standard multivariate 
normal population with a mean equal to μ for all variables and a covariance 

matrix  . The Second Group  was also generated from a multivariate 

normal population, but with a mean equal to    .  

We therefore imposed a different degree of separation  δ between the 
groups. 
Furthermore, taking into consideration the effects that atypical observations 
might have on the model too, we decided to build a well-organised and 
complex experimental contamination design that would allow us to explore 
this particular aspect of the problem, which has been paid very little 
attention by the literature, and draw some conclusions. 
 

 

   

          

                 ( 1, ...., )

   

      

    

N size of the population

k number of classes

nj size of the class j k

v number of features

degree of separation among the subpopulations

prior prior probability to belong




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to a class
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Contamination design 

Typology: shift contamination 
Level: proportion of contaminated data: 
The contamination can be carried out on: 

 only one class 

 on both 

Intensity: value of the constant to be added to the original data. 
 
Both for datasets with and without contamination, each simulation in the 
Stacking process is repeated in a series of 100 trials. In each trial a dataset 
is generated by following the characteristics indicated in the section above. 
 
 

3.3.3 Base Classifiers 
 

The proposed Stacking scheme includes the use and subsequent 
combination of a set of 13 base-level classification methods generated by 
the 8 learning algorithms, as indicated in the subdivision of section 3.2.1, 
whose output will be used as input data for the meta-level algorithms. 

 
The set is therefore composed of  classifiers that have been generated by 

following several criteria: 
 

- by applying different learning algorithms to a single data set 
- by  applying a single learning algorithm with different parameter 

settings to a single data set 
- in the case of multiple classifiers by applying a single learning 

algorithm to the  different variants of a dataset (bagging, boosting) 
 

As we have already indicated, very few modifications were made 
intentionally to their default parameter settings and the exceptions will be 
included in the description of the single classifiers. 
In the following part of this Section we illustrate the main parameter settings 
of the base classifiers used if they are different from the default ones. 
 

 Linear Discriminant Analysis and Quadratic Discriminant Analysis 
 
No significant modifications were made to their default parameter settings, 
but of course this is without considering what has been indicated for the 
organisation of the cross validation procedure (which holds for all the 
classifiers, excluding a version of Classification Tree and of Adaboost, as 
we will see later), which has made it possible to return the output predicted 
class labels and posterior probabilities homogeneously, and also to 
compute cross validation error. 
 



 Naive Bayes.  

Since the algorithm provides support for Gaussian and Kernel distribution, 
both were used in the experimental phase. In fact, it seems appropriate to 
use the Gaussian distribution for features that have normal distributions in 
each class, since for each dataset we had generated two groups of nj 
observations consisting respectively of a nxv matrix generated from a 
standard multivariate normal population. However, in the algorithm’s 
training phase we also used a Kernel distribution that is appropriate for 
features that have a continuous distribution. Since this requires more 
computing time and more memory than the normal distribution and since in 
our case the results did not seem significantly better, we preferred to use 
the normal distribution of the proposed scheme.  
  

  Classification Tree 

These were used in the two versions: 
- with pruning, which computes the optimal sequence of 

pruned subtrees (TRE) 

- without pruning, which returns the decision tree that is the 

full one (TRE1) 

 

 Bagged Tree 

 

To estimate the prediction error of the bagged ensemble, instead of 

computing predictions for each tree on its out-of-bag observations, we 

average these predictions over the entire ensemble for each observation 

and then compare the predicted out-of-bag class value with the true class at 

this observation (as by default), and we built the cross validation procedure 

on the entire dataset. 

We created an ensemble of 30 bagged decision trees. 

 Adaboost 

We use two ensemble algorithms: 
-  First, (ADAm) based on AdaBoostM1 (Freund and Schapire, 1996). 

The base classifier returns a discrete class label.  
Weak learner = tree.   
Number of ensemble learning cycles = 30 
 

-  For the second (ADA), we created a personalized function that 
extends the Matlab function “adaboost”, with the implementation of 
the cross validation procedure, and, for calculating posterior 



probabilities extends the calibration of the output of AdaBoost. MH 
proposed by Busa-Fekete et al. (2011) for multi-class problems.  
Number of ensemble learning cycles=30 
 
 

 Support Vector Machine (LIBSVM ) 
 

The Support Vector Machines (SVM), developed in the 1990s (Boser et al., 
1992;  Cortes and Vapnik,1995) are held to be among the most effective 
methods of supervised learning. They were implemented in the scheme 
proposed through LIBSVM by Chang and Lin (2011), one of the most widely 
used SVM software programs.  
Four different implementations of the algorithm were created and for all of 
them the transformation of the design matrix was implemented in a sparse 
matrix, the procedure of common cross validation as for the other 
classifiers, together with the computing of posterior probabilities for 
extending SVM to give probability estimates (instead of only class labels as 
default). 

The Kernel function was chosen as a reference: RBF (Gaussian) kernel: 

 
2

,
x y

K x x e
 

 , 0   

The specific implementations for each version of the algorithm are 
summarised as follows: 

- SVM 
- Scaled SVM 

The authors recommend linear scaling. We have chosen to scale 
each attribute to the range [0,1] 

- SVMbest 
A procedure of cross validation was implemented in order to choose 
the best parameters ( ,C  ) for an RBF kernel. Various pairs of ( ,C  ) 

values are tried and the one with the best cross validation accuracy 
is chosen. We recommend trying exponentially growing sequences 

of parametersC and   to select good ones (e.g. 

5 3 15
2 2 2, ,...,C
 


15 13 3

2 2 2, ,...,
  ). Although the grid search in 

cross validation is recommended, it means a great deal of 
computational time, at least with the values suggested.  

- scaled SVMbest  
     There are the implementations for SVM best and for scaled SVM. 

 
 

3.3.4 Meta-classifiers 
 

Since we believe that both MLR  and ridge regression are valid algorithms 
for combining the outputs of base classifiers, we decided to use both of 
them with a mechanism that establishes in a mutually exclusive way the 



application of linear regression in the hypothesis in which there is no 
multicollinearity for input matrix X, and of ridge regression when the 
dimensionality of the meta-feature space L (L=number of base classifiers) is 
greater than the effective rank of the input matrix. 
 

        MLR (Multi-Response Linear Regression) 

        Ridge Regression  

The use of cross-validation on meta-data has also been envisaged for meta-
classifiers, to build and then evaluate the meta-classifier, reduces the risk of 
overfitting and enables us to consider the estimate of the prediction error 
given by such a process as a generalization error of the Stacking scheme. 
For this part of the work, therefore, we made extensive use of cross validation, 
since we use it in order to: 
 

- build the classifiers (base and meta-level) from the training 

data  

- estimate the prediction error of the base classifiers and the 

final model   

- estimate the unknown tuning parameters (particularly for 

Ridge Regression and Support Vector Machine). 

  
However, as we have mentioned before, we preferred not to proceed with 
an extreme tuning of the parameters with regard to the objective of 
investigating whether the Stacking with the combination of different methods 
is able to improve the performances of the classifiers, mitigating any bad 
performances, especially those of the “weakest” ones.  
 

 

3.3.5 Evaluating and comparing Classification Methods 
 

The generalization errors of the base classifiers for a given input dataset 
and of a meta-classifier  (for a input dataset generated from  partial class 
probability distributions from each base classifier) are estimate by averaging 
the result of 100 runs of ten-fold stratified cross validation . Cross validation 
is repeated 100 times using different random seeds of the data resulting in 
100 different sets of folds. The same folds are used in all experiments to 
built all the base classifiers and to estimate their  true errors.  
It should always be remembered that even though we put together values 
relative to Stacking and base classifier errors in the tables and in the 
different plots, they are constructed using different typologies of input data.  
 



A comparison can be made among Stacking schemes and for the single 
Stacking scheme just to establish whether or not Stacking is the better, 
worse or at least equal to the best base classifier.  
Because of the variability and fluctuation of the cross validation error, the 
average does not seem to be sufficient and in addition other measures are 
calculated on the distribution of the cross validation errors for each classifier 
and averaged over the total of the iterations carried out. 
 

 Position indices 
- Median 
- Percentage of best positioning 

 

 Indices of variability 
- Standard deviation 
- Median of deviations from the median 
- Interquartile difference 
- Range 

 
 

3.4 Discussion 
 

The state of the art in the research of the Stacking framework was a valid 
starting point for this work. In this chapter we have illustrated the main 
characteristics of the proposed Stacking scheme, starting from the choice of 
implementing the whole Stacking scheme in the Matlab environment and 
built in the form of an interlinked process which is begun by the generation 
of the level-0 data in the case of the simulation study which led to the 
generation of datasets with different characteristics and, furthermore, taking 
into consideration the effects that atypical observations might have on the 
model too, to build a well-organised and complex experimental 
contamination design that would allow us to explore this particular aspect of 
the problem, to which very little attention has been paid by the literature, 
and to draw some conclusions. Of course, the implementation of the entire 
Stacking scheme required a complete homogenisation of the procedures 
relative to each of its phases in order to guarantee uniformity and therefore 
a comparability of the outputs returned at every step. Furthermore, the 
creation of a double procedure of cross-validation both for base and meta-
classifiers ( which are represented by MLR and Ridge Regression, the use 
of which is regulated by a mutually exclusive insertion mechanism where 
conditions of collinearity occur), made it possible to build and evaluate 
classifiers at a double level, thus reducing the risk of overfitting too.   
Together with cross validation error, other measures have been included, 
calculated on the error distribution of cross validation for each classifier and 
for Stacking. In the following chapter ample space will be given to the 
results of the application of the proposed scheme to the datasets generated 
by the experimental design, contaminated and non-contaminated, and on 



real datasets to empirically verify their functioning. With a view to a further 
improvement of the entire proposed process, which is at the experimental 
stage, the research activity will be directed towards optimising performances 
and guaranteeing the reliability of the predictions for single classifiers by 
modifying the setting of the parameters used in this phase. 
 
 
4.EXPERIMENTAL RESULTS  
 

In this section there is a summary of the main results obtained from the 
application of the proposed Stacking scheme to datasets generated by 
means of the experimental design. In particular, in section 4.2  the results 
relative to the non-contaminated data are illustrated, in order to investigate 
the effects on the  performance of the base classifiers and of Stacking in the 
presence of input datasets with different characteristics. In section 4.3 the 
application was carried out on simulated and contaminated data to 
investigate whether the presence of outliers can affect the performances of 
the base classifiers and of  Stacking. In Section 4.4 are illustrated the 
results obtained using three different Stacking variants with different base-
level classifier subsets built on different datasets.  
In Appendix to Chapter 4 is illustrated the application of the proposed 
scheme to real data. 
 
 

4.2 Simulated data 
 

Based on the characteristics indicated in the previous chapter, datasets 
have been generated with the following characteristics, which make them 
different in terms of complexity and degree of separation among the groups: 
 

N = 120; 200 

1n = 60; 100 

2n = 60; 100 

v =  3; 5 ; 7 ; 10 

 =  0.5;  1;  1.5;  2;  2.5;  3 

 
The experimental design for a fixed scheme with 13 base-level classifiers 

is used, to which we always refer for completeness. Subsequently, some 
examples of level-0 data will be reported for the base-level algorithms. Ten-
fold stratified cross-validation was used on each dataset to build single 
methods and estimate the prediction error of all the base-level classifiers.   
Every trial process  was repeated 100 times and an average of the results 
was calculated in order to find the error of average cross validation for each 
classifier, relative to each experiment.  



The posterior probabilities of each classifier derived from the process of 
cross-validation form the meta-dataset for the meta-classifier.  

Ten-fold stratified cross-validation is also used, repeated 100 times, for 
the meta classifiers, which  are Linear regression and Ridge regression 
(mutually exclusive when hypotheses of multicollinearity recur).  
We are interested in investigating empirically the performances of the single 
classifiers and of Stacking for datasets with different characteristics and 
above all if it is convenient to use Stacking in terms of improving 
performances instead of a single classifier, bearing in mind the necessary 
increase in computation.  
It should always be remembered that even though we put together values 
relative to Stacking and base classifier errors in the tables and in the 
different plots, they are constructed using different typologies of input data.  

A comparison can be made among Stacking schemes and for the single 
Stacking scheme just to establish whether or not Stacking is better, worse 
or at least equal to the best base classifier. 

 
An analysis of the results obtained by applying the Stacking scheme to the 

set of the datasets generated by means of the experimental design does not 
lead us to believe that the prediction error of the Stacking scheme is to be 
considered lower than any other classifier or that, therefore, the  Stacking 
scheme is preferable in terms of performances to the use of the best single 
classifier.  
TABLE 1.- Simulated Data.Measures of the performances of the classifiers 
and of the Stacking scheme. Average figures over 100 iterations. N=200, 
v=10,δ=0.5 
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Classifier        

LDA 0,2334 0,2300 0,0315 0,0450 0,1450 0,0200       12 
QDA 0,2703 0,2700 0,0398 0,0550 0,2000 0,0300 0 
TRE 0,3565 0,3550 0,0418 0,0500 0,2350 0,0250 0 

TRE1 0,3580 0,3600 0,0386 0,0450 0,2050 0,0250 0 
BAG 0,2799 0,2800 0,0347 0,0475 0,1750 0,0250 2 
ADA 0,2767 0,2800 0,0357 0,0475 0,1900 0,0250 1 

ADAm 0,2764 0,2750 0,0340 0,0475 0,1500 0,0250 0 
NBA 0,2353 0,2350 0,0287 0,0400 0,1200 0,0200       12 
SVM 0,2443 0,2400 0,0329 0,0425 0,1500 0,0225 7 

SVMscaled 0,2239 0,2200 0,0315 0,0450 0,1400 0,0200       33 
SVMb 0,2443 0,2400 0,0329 0,0425 0,1500 0,0225 0 
SVMbscaled 0,3497 0,2650 0,1542 0,3025 0,4650 0,0650 9 

GLM 0,2313 0,2300 0,0300 0,0450 0,1400 0,0200 8 
STA 0,2314 0,2350 0,0361 0,0450 0,1850 0,0225       16 

 
It always achieves good performances and is to be considered among the 
best, but it does not seem to be preferable for this type of application. 
 



As we can see in an example summarised in Table 1, which shows the 
results of the application of the  Stacking scheme to the dataset obtained 

from the experimental design characterised by 1 2 60n n  , 10v  , 

0.5  . It should be noted that the best positioning is always in agreement 

with the lowest error.  
 
We can appreciate a certain variability in the boxplots of error distribution in 
Figure 3. 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
classifiers

L
D

A

Q
D

A

T
R

E

T
R

E
1

B
A

G

A
D

A

A
D

A
m

N
B

A

S
V

M

S
V

M
s
c
a
le

d

S
V

M
b

S
V

M
b
s
c
a
le

d

G
L
M

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Box plot

 
FIGURE 3. - Simulated Data. Boxplots of error distribution on 13 base 
classifiers and Stacking scheme. N=200, v=10,δ=0.5 
 
On a more general level, Table 2 illustrates the results relative to the 
average cross validation error for each base classifier and for Stacking for 
input datasets with varying degrees of complexity and with different degrees 
of separation between the two groups.  

The analysis was carried out on the entire set of the generated datasets, 
but for the sake of brevity we will only report the most important results. The 
behaviour of scaled SVM (which represents one of the implementations 
adopted for the Support Vector Machine described in Chapter 3 is 
particularly interesting, as it is has the lowest error among the classifiers, 
also in comparison with Stacking. Instead SVMbest does not achieve such 
moderate error levels and this pushes us to improve the cross validation 
procedure used for  tuning the parameters.  
 

 



TABLE 2. - Simulated Data. Cross validation error for each base classifier 
and for Stacking for input datasets with varying degrees of complexity and 
with different degrees of separation between the two groups. N=120 
 

 δ=0.5 δ=3 

 n. variables n. variables 

Classifier 3 5 7 10 3 5 7 10 

LDA 0,3432 0,3145 0,2738 0,2396 0,0053 0,0003 0,0001 0,0000 
QDA 0,3539 0,3392 0,3123 0,2948 0,0058 0,0003 0,0002 0,0000 
TRE 0,4174 0,3958 0,3807 0,3602 0,0392 0,0409 0,0428 0,0418 
TRE1 0,4243 0,3980 0,3761 0,3603 0,0381 0,0397 0,0425 0,0407 
BAG 0,3921 0,3586 0,3258 0,2840 0,0197 0,0101 0,0035 0,0023 
ADA 0,3785 0,3553 0,3213 0,2809 0,0201 0,0193 0,0199 0,0223 
ADAm 0,3795 0,3557 0,3177 0,2863 0,0206 0,0048 0,0040 0,0072 
NBA 0,3509 0,3236 0,2809 0,2476 0,0050 0,0003 0,0000 0,0000 
SVM 0,3436 0,3188 0,2856 0,2431 0,0058 0,0005 0,0001 0,0000 
SVMscaled 0,3347 0,3032 0,2657 0,2274 0,0044 0,0002 0,0000 0,0000 
SVMb 0,3436 0,3188 0,2856 0,2431 0,0058 0,0005 0,0001 0,0000 
SVMbscaled 0,4033 0,4252 0,4069 0,4119 0,0428 0,0052 0,0076 0,0000 
GLM 0,3427 0,3129 0,2757 0,2428 0,0092 0,0009 0,0002 0,0000 
STA 0,3545 0,3237 0,2846 0,2467 0,0073 0,0012 0,0001 0,0001 

 
Thus, by using a set of classifiers containing scaled SVM, Stacking scheme 

could prove itself not to be competitive, as we can also see in Table 3 which 
summarises the performances of scaled SVM and the Stacking scheme on 
all the datasets generated by this part of the experimental design. 

 
TABLE  3. - Simulated Data. Comparison between the cross validation error 
given by scaled SVM and the Stacking scheme on the datasets generated 
by the experimental design. N=120, different level of degree of separation 
and number of variables. 
 

 Stacking scheme  SVMscaled 

 n. variables  n. variables 

δ 3 5 7 10 δ 3 5 7 10 

0,5 0,3545 0,3237 0,2846 0,2467 0,5 0,3347 0,3032 0,2657 0,2274 

1 0,2095 0,1515 0,1080 0,0691 1 0,1945 0,1388 0,0971 0,0608 

1,5 0,1074 0,0576 0,0316 0,0153 1,5 0,0972 0,0470 0,0245 0,0093 

2 0,0507 0,0187 0,0071 0,0019 2 0,0402 0,0124 0,0042 0,0006 

2,5 0,0201 0,0035 0,0012 0,0001 2,5 0,0139 0,0018 0,0006 0,0000 

3 0,0073 0,0012 0,0001 0,0001 3 0,0044 0,0002 0,0000 0,0000 

 
 

On going back to Table 2 we notice that apart from the above-mentioned very 
good behaviour of scaled SVM, generally speaking the parametric classifiers 



reach some of the best levels of accuracy, while “weak” classifiers, such as 
Classification Tree and the ensemble methods such as Bagged Tree and 
Adaboost achieve rather disappointing performances.  

 
As far as the analysis of results relative to the measure that counts the 

number of times an algorithm performs better than the others (over 100 
iterations) is concerned, Table 4 shows that for a low level of degree of 
separation, scaled SVM achieves the best relative positioning compared to 
the other classifiers, while with a higher  degree of separation LDA achieves 
by far the best positioning. 
 
TABLE 4. - Simulated Data. Best positioning over 100 iterations for each 
classifier and Stacking scheme  for different level of degree of separation 
and number of  variables. N=120 
 

 δ=0.5 δ=3 

 n. variables n. variables 

Classifier 3 5 7 10 3 5 7 10 

LDA 16 14 17 15 75 98 99 100 
QDA 4 4 3 1 9 1 0 0 
TRE 2 0 0 0 1 0 0 0 
TRE1 1 0 0 0 0 0 0 0 
BAG 1 5 3 1 2 0 0 0 
ADA 7 1 1 3 3 0 1 0 
ADAm 3 7 6 2 0 0 0 0 
NBA 12 9 8 8 4 0 0 0 
SVM 9 8 4 15 0 0 0 0 
SVMscaled 22 27 27 27 3 1 0 0 
SVMb 0 0 0 0 0 0 0 0 
SVMbscaled 5 5 7 7 1 0 0 0 
GLM 6 6 13 11 1 0 0 0 
STA 12 14 11 10 1 0 0 0 

 

 
This result is also confirmed for N=200. For datasets with intermediate 

degrees of separation (≥1.5) the best positioning is always achieved by 
LDA, above all if associated (in the lower values) with a higher complexity 
due to the number of variables. 
By comparing Table 2 and Table 4 (and more generally the whole set of 
results), we can observe that there is not always a correspondence for the 
classifiers between the best positioning achieved and the lowest value of 
cross validation error achieved and also because, since we are dealing with 
an average of 100 iterations, the variability of a classifier is significant in 
terms of the error returned which is often very high. It may therefore happen 
that classifiers with a higher variability can achieve better positioning. 
This circumstance should lead to us to continue looking for more adequate 
measurements (at some point combining the use of more than one index) 
which are able to capture accuracy in the best possible way in terms of 



estimating the prediction error returned by the single classifiers also in order 
to improve the comparison with the use of a more complex scheme like 
Stacking. 
 
 

4.3 Simulated contaminated data 
 

The second application of the Stacking procedure to simulated data was 
carried out on datasets generated with the same characteristics as the ones 
used in the previous section but they have undergone a contamination 
design which included a shift contamination with different levels of 
contaminated data, carried out on only one class or both and with different 
values of the constant to be added to the original data. Let’s summarize the 
main characteristics of the contamination design: 
 
Level (proportion) of contaminated data: 5%; 10%; 30% 
Number of classes : one; both 
Value of the constant to be added: +2; +4 
 
They were generated by means of the contamination design and about 480 
datasets were analysed. 

 
In this section we are interested in investigating empirically the 

performances of the single classifiers and of Stacking for datasets upon 
which a contamination has been carried out and above all in seeing if it is 
convenient to use Stacking in terms of improving performances instead of a 
single classifier, bearing in mind the necessary increase in computation. 

In the case of contaminated data Stacking improves its performances 
noticeably compared to what we have observed for non-contaminated data, 
in some cases also in comparison with scaled SVM, and generally appears 
to be very competitive, above all when the contaminations are more 
substantial. In a set of classifiers in which there was no SVM it would be the 
best for each of the analysed datasets. While scaled SVMbest achieves 
cross validation error values that are always very substantial and therefore 
are definitely not to be inserted with the current parameter setting (selected 
by means of  cross validation) in a basic set of classifiers.   

It will be advisable to improve the tuning of the parameters if the decision 
is taken to use it. It was inserted in order to make the analysis complete, but 
because of its very bad performances, it will not be taken into account in the 
comparison with the other classifiers. We will distinguish the hypotheses in 
which the contamination on the total of the observations is moderate (10%) 
from the hypotheses in which it is stronger (30%) and is carried out on one 
or both the classes. Table 5 illustrates the results relative to the average 
cross validation error for each base classifier and for Stacking for different 
levels of contamination with different degrees of separation between the 



groups and for different number of variables of the input datasets. The 
contamination is only intended for one class: cont=+ 4. N=120. 

 
When only one class is contaminated with a proportion of 10%, the 

behaviour of Stacking is very good and is only exceeded by three 
implementations of SVM. On the contrary, the effect of the contamination is 
quite substantial for Linear Discriminant Analysis and Logistic Regression, 
as well as for scaled SVMbest, which we have already said will no longer be 
inserted into the set of classifiers, as we prefer SVM best or scaled SVM. 
 
TABLE 5. - Simulated contaminated data. Cross validation error for 13 base 
classifier and for Stacking for different levels of contamination, different 
degrees of separation between the groups and for different number of 
variables of the input datasets. The contamination is only intended for one 
class: N=120. 

 10% 30% 

           

 δ=0.5 δ=3 δ=0.5 δ=3 

 n. variables n. variables 

Classifier 3 10 3 10 3 10 3 10 

LDA 0,5092 0,5007 0,1211 0,1220 0,5083 0,4667 0,4667 0,4625 

QDA 0,3789 0,3377 0,1210 0,1098 0,5250 0,5667 0,2240 0,1714 

TRE 0,3853 0,3502 0,1456 0,1397 0,3750 0,3167 0,2416 0,2161 

TRE1 0,3903 0,3502 0,1426 0,1446 0,3833 0,3500 0,2426 0,2186 

BAG 0,3631 0,2708 0,1131 0,0698 0,2583 0,2583 0,2098 0,1045 

ADA 0,3845 0,3618 0,1450 0,1414 0,3083 0,2750 0,2513 0,2073 

ADAm 0,3531 0,3066 0,1337 0,1051 0,2583 0,2750 0,2235 0,1672 

NBA 0,3945 0,3928 0,1243 0,1009 0,5000 0,5000 0,2715 0,2334 

SVM 0,3073 0,2201 0,0858 0,0363 0,2250 0,1250 0,1590 0,0597 

SVMscaled 0,3022 0,2067 0,0788 0,0333 0,2417 0,1167 0,1541 0,0510 

SVMb 0,3073 0,2201 0,0858 0,0363 0,2250 0,1250 0,1590 0,0597 

SVMbscaled 0,4873 0,4733 0,1352 0,0930 0,4917 0,4750 0,4153 0,3868 

GLM 0,5072 0,4994 0,1362 0,1597 0,5083 0,4667 0,4728 0,4646 

STA 0,3248 0,2145 0,0876 0,0362 0,2417 0,1167 0,1681 0,0552 

 

 
By increasing the degree of separation between the groups, we find quite 

uniform behaviour for the datasets with a moderate number of variables, 
with the exception of SVM and Stacking, while the application to a dataset 
with a higher number of variables greatly improves the performances of 
Naive Bayes, of the three best implementations of SVM and of Stacking.  



We will see that by contaminating only one class with a level of 30% there 
will be a very clear effect on the four parametric base classifiers present in 
the set and in particular on the behaviour of NBA which, in a contamination 
hypothesis of 30% of the data in the presence of a low degree of separation 
between the groups will return a fixed error of 0.50 for every  iteration. 
Stacking achieves an error level equal to that of the best classifier, which is 
scaled SVM. In the presence of a higher degree of separation (δ=3), the 
worst performance is given dramatically  only by LDA and Logistic 
Regression.  
Moving on to the hypothesis of contaminating two classes, in Table 6 we 
can see that with a moderate contamination and a low degree of separation 
between the classes, the four parametric classifiers in any case achieve a 
high level of error, although they are not among the worst.  
 
TABLE 6. - Simulated contaminated data. Cross validation error for 13 base 
classifier and for Stacking for different levels of contamination, different 
degrees of separation between the groups and for different number of 
variables of the input datasets. The contamination is intended for two class: 
N=120. Cont=+4. 

 10% 30% 

         

 δ=0.5 δ=3 δ=0.5 δ=3 

 n. variables n. variables 

Classifier 3 10 3 10 3 10 3 10 

LDA 0,4254 0,4583 0,0883 0,1094 0,4667 0,4583 0,3288 0,3033 

QDA 0,4633 0,4873 0,0927 0,1843 0,4667 0,5750 0,3623 0,3552 

TRE 0,4306 0,3973 0,1054 0,1195 0,4750 0,3833 0,1607 0,1610 

TRE1 0,4303 0,3881 0,1036 0,1188 0,4417 0,3917 0,1564 0,1558 

BAG 0,4002 0,3053 0,0736 0,0525 0,4250 0,3000 0,1352 0,0845 

ADA 0,4109 0,3723 0,0904 0,0904 0,3917 0,3583 0,1605 0,1584 

ADAm 0,3951 0,3547 0,0903 0,0748 0,4083 0,4000 0,1554 0,1368 

NBA 0,4309 0,4373 0,0758 0,0509 0,5000 0,5000 0,3921 0,4523 

SVM 0,3610 0,2357 0,0543 0,0268 0,3417 0,2250 0,0966 0,0383 

SVMscaled 0,3479 0,2379 0,0489 0,0234 0,3667 0,2333 0,0927 0,0331 

SVMb 0,3610 0,2357 0,0543 0,0268 0,3417 0,2250 0,0966 0,0383 

SVMbscaled 0,4494 0,3653 0,2683 0,0712 0,5667 0,3750 0,2195 0,2116 

GLM 0,4204 0,4524 0,0703 0,0873 0,4500 0,4500 0,2563 0,2689 

STA 0,3532 0,2377 0,0580 0,0245 0,3667 0,2167 0,1020 0,0376 
 

 



With a higher level of contamination for the two classes and a low degree of 
separation between the groups, they are always among the worst, and 
generally speaking none of the classifiers gives a good performance.  
The behaviour of Stacking is always very interesting and overall is 
preferable for (δ=0.5, v=10), thus confirming the analogous result obtained 
also in the case of the contamination only of a single class in Table 5. In the 
case of a higher degree of separation (δ=3), the worst performance is 
achieved once again by Linear Discriminant Analysis and Logistic 
Regression.  
Generally speaking, based on the outcome of the experiments carried out, it 
seems to be that the contamination contained by a single class causes a 
deterioration in the performances of LDA and Logistic Regression, while 
with a higher level of contamination this only happens with a high degree of 
separation between the groups. Where there is a low degree of separation, 
the worst performance will be achieved for all four of the parametric 
classifiers.  
 
TABLE 7. - Simulated contaminated data. Cross validation error for 13 base 
classifier and for Stacking.  

 10% 30% 

         

 δ=0.5 δ=3 δ=0.5 δ=3 

 n. variables n. variables 

Classifier 3 10 3 10 3 10 3 10 

LDA 0,4171 0,4443 0,0817 0,0861 0,4900 0,4659 0,3330 0,3199 

QDA 0,4498 0,4807 0,0849 0,1329 0,4700 0,4792 0,3702 0,3470 

TRE 0,4255 0,3592 0,0974 0,0943 0,4200 0,3419 0,1466 0,1357 

TRE1 0,4215 0,3633 0,0981 0,0947 0,4450 0,3427 0,1483 0,1381 

BAG 0,3990 0,2860 0,0684 0,0461 0,4750 0,2520 0,1230 0,0669 

ADA 0,4017 0,3437 0,0884 0,0763 0,4000 0,3193 0,1451 0,1221 

ADAm 0,3955 0,3307 0,0882 0,0656 0,4200 0,3226 0,1394 0,1148 

NBA 0,4236 0,4400 0,0734 0,0505 0,5000 0,5000 0,3934 0,4556 

SVM 0,3513 0,2299 0,0523 0,0234 0,3250 0,1992 0,0908 0,0330 

SVMscaled 0,3489 0,2240 0,0495 0,0211 0,3400 0,1888 0,0891 0,0294 

SVMb 0,3513 0,2299 0,0523 0,0234 0,3250 0,1992 0,0908 0,0330 

bscaled 0,4375 0,3922 0,1483 0,0501 0,5650 0,5088 0,1987 0,1706 

GLM 0,4130 0,4347 0,0649 0,0666 0,4800 0,4636 0,2562 0,2609 

STA 0,3497 0,2220 0,0537 0,0231 0,3100 0,1850 0,0959 0,0316 

 

The behaviour of Naive Bayes is particularly interesting, since at a high level 
of contamination, carried out both on one class and on both using the 



hypothesis of a low degree of separation, it always obtains a value equal to 
0.50 which remains the same for each iteration as can be seen in Table 5 
and in Table 6, so using it is not very effective. 
 
Table 7 summarises the results relative to the average cross validation error 
for each base classifier and for Stacking for different levels of contamination  
(10% and 30%), different degrees of separation between the groups, 
different numbers of variables of the input datasets. The contamination is 
carried out on both the classes. N=200. Cont= +4. 
In comparison with non-contaminated data, we can observe that  Stacking 
does not seem to be affected by contamination in the same way as scaled 
SVM does. In fact, Stacking is the best classifier in the hypothesis with a low 
degree of separation, both in the case of contamination at 10% (for v=10) 
and at 30%. Instead for all the other classifiers the effect is quite 
considerable, as can be seen in Figure 4 which can be compared with 
Figure 3 relative to the dataset generated by the experimental design but 
not contaminated. 
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FIGURE 4. - Simulated contaminated data. Boxplots of error distribution on 
13 base classifiers and Stacking scheme. N=200, v=10,δ=0.5, cont=+4, 
level=30%. 
 

 
 
 



4.4 Are the number and type of Base Classifiers important? 
 

An ensemble of classifiers consists of a set of different classification 
algorithms and a function to combine their individual outputs in order to 
improve accuracy. 
Any classifier may be used in a Stacking learning scheme and any number 
of classifiers may be used. 
For this work we have used a fixed scheme with 13 base-level classifiers. 
In this Section, we are interested in investigating whether the performance 
of Stacking may be modified if we use different base-level classifier subsets 
on datasets with different characteristics. 
To this end, we have created three different Stacking variants with different 
base-level classifier subsets built on different datasets. 
The three subsets are differentiated according to the number of classifiers 
chosen and to their characteristics: 
 

  subset  I: composed of 3 classification algorithms : Tree Bagged, 
AdaboostM1 and SVMbest. The relative Stacking scheme is identified 
by “STA3”. 

 subset II:  composed of 4 classification algorithms: 2 different variants 
of Classification Tree, Tree Bagged and AdaboostM1. The relative 
Stacking scheme is identified by “STA4”. 

  subset III: composed of 6 classification algorithms: Linear Discriminant  
Analysis,Quadratic Discriminant Analysis, Tree Bagged, AdaboostM1, 
Naïve Bayes Classifier and Logistic Regression. The relative Stacking 
scheme is identified by “STA6”. 

 
In the first subset there are classifiers that may be defined as “strong”, since 
both Tree Bagged and Adaboost are themselves  members of the ensemble 
generated by applying a single learning algorithm (a classification tree, 
which is considered as a “weak“ classifier) and the Support Vector Machine 
(in its version with the selection of the best model through special cross 
validation) has proved itself to be fairly stable for predictions.  
In contrast, in the second subset there are two “weak” learning algorithms 
and two very stable ones. The reason for this choice is to investigate 
whether a combination of different strength classifiers can still guarantee 
satisfactory performances. 
For the third subset, which is much more numerous, four parametric 
classifiers were chosen, two of which are popular but different linear 
methods for classification tasks (Linear Discriminant Analysis and Logistic 
Regression). The main difference between them is in the way the linear 
function is fitted to the training data. Naïve Bayes, which is a simple method, 
often tends to outperform more sophisticated algorithms when the training 
set is small. 



The experimental plan for the main set of base-level classifiers was used, to 
which we refer for completeness. Subsequently, some examples of level-0 
data will be reported for the base-level algorithms. Ten-fold stratified cross-
validation was used for all the base-level classifiers. As in the previous 
experiments, at every step of cross validation, one part of the available data 
was used to fit the model, and a different part was used to estimate 
individual prediction error.  
Every trial process  was repeated 100 times and an average of the results was 
calculated in order to find the error of average cross validation for each classifier 
and relative to each experiment.  
The  posterior  probabilities of each classifier derived from the process of 
cross-validation form the meta dataset for the meta-classifier.  
Ten-fold stratified cross-validation is also used, repeated 100 times, for the 
meta classifiers, which also in this case are Linear regression and Ridge 
regression (mutually exclusive when hypotheses of multicollinearity recur).  
For completeness, in Appendix to Chapter 4  we show tables with the 
results  of some experiments relating to the performances of the base-level 
classifier sets on the different dataset input and to the Stacking for different 
combination schemes. Any slight differences in the performances of some 
classifiers in the various schemes may be due to different partitions of the 
cross validation. Stacking turns out to be competitive and better  too when 
compared with other classifiers, especially when there is greater complexity 
in the base models, or rather when the input datasets are characterised by 
one dimension larger in terms of observations and variables . The effect of 
these circumstances is however accentuated when there is a high degree of 
separation between the two populations. 
 
TABLE 8.  Cross validation error rate for the different Stacking schemes built. 

 STA3 STA4 STA6 

Base 
Classifier 
Input 
Dataset       

120_3_05 0.3547 0.3903 0.3472 

120_10_05 0.2323 0.2798 0.2399 

120_3_3 0.0048 0.0239 0.0066 

120_10_3 0 0.0059 0 

200_3_05 0.3498 0.3801 0.3450 

200_10_05 0.2268 0.2732 0.2324 

200_3_2 0.0434 0.0656 0.0462 

200_10_2 0.0004 0.0092 0.0016 

200_3_3 0.0058 0.0168 0.0016 

200_10_3 0 0.0025 0 

 



In Table 8 and in Figure 5 some results are summarised relating to the 
performances of the three different Stacking  schemes built with base-level 
classifier sets of different sizes.  
 
The different level-0 datasets  in the first column refer to the data  input with 
which the base-level classifiers were built and their prediction errors and 
probabilities were estimated (via cross-validation) and which form each  
Stacking scheme.  The input data for the meta-classifier, therefore, are 
always the probabilities generated by base classifiers.  
By observing the results, we can say first of all that the STA4 ensemble 
classification method is the worst for any kind of dataset. The weakness of 
two of the base-level classifiers was not sufficiently balanced out by the 
presence of the two ensemble classifiers, which are more stable.  In this 
case, Stacking was unable to fully exploit the predictive capability of the 
stronger classifiers to compensate for the weakness of the other two.  
 

 
 
FIGURE 5. - Cross validation error rate for the different Stacking schemes 
built and different input dataset. 
 
As far as the other two schemes are concerned, there is very little difference 
between them, although STA3 shows a higher success rate than the more 
complex STA6.  
This might lead us to think that the choice from the start of high performance 
base-level classifiers could increase the predictive capacities of Stacking.   
Furthermore, together with a greater complexity of a combination method 
built with a greater number of base-level classifiers, such as STA6, there is 
a better  performance, also on level-0 datasets which express less 
complexity in terms of the number of variables and the degree of 
overlapping between the two populations in order to signify the weight 
expressed by the parametric base-level classifiers in their prediction. 



However, a comparison shows that STA3 is more successful (although 
the differences are slight), thus representing the proposal with the best 
performances, which is also economical in its combination of the presence 
of classifiers with different characteristics with a lesser complexity of the 
model.  
 
 

4.7   Some remarks 
 

In this chapter we have summarized the main results obtained from the 
application of the proposed Stacking scheme to datasets generated by 
means of the experimental design and also real data (Appendix to Chapter 
4). An analysis of the results relative to the set of the datasets generated by 
means of the simulation study, does not lead us to believe that the  Stacking 
scheme is preferable in terms of performances to the use of the best single 
classifier. It always achieves good performances and is to be considered 
among the best, but it does not seem to be preferable for this type of 
application. In the case of contaminated data, Stacking improves its 
performances noticeably compared to what we have observed for non-
contaminated data, in some cases also in comparison with scaled SVM, and 
generally appears to be very competitive, above all when the 
contaminations are more substantial. In a set of classifiers in which there 
was no scaledSVM it would be the best for each of the analysed datasets. 
The results obtained using three different Stacking variants with different 
base-level classifier subsets built on different datasets show that the choice 
from the start of high performance base-level classifiers could increase the 
predictive capacities of Stacking, and however, a comparison shows that 
the Stacking scheme with three base classifiers, is more successful 
(although the differences are slight). There would seem to be a confirmation 
of the circumstance that a greater complexity of the meta model does not 
improve results also for the applications to real data : in fact the best 
Stacking performances were achieved (at least in the examples analysed) 
with schemes with a lower number of base classifiers STA3 and STA6. 
We can observe, moreover, that there is not always a correspondence for 
the classifiers between the best positioning achieved and the lowest value 
of cross validation error achieved and also because, since we are dealing 
with an average of 100 iterations, the variability of a classifier is significant in 
terms of the error returned which is often very high. It may therefore happen 
that classifiers with a higher variability can achieve better positioning. 
Because of the variability and fluctuation of the cross validation error, the 
average does not seem to be sufficient as a measurement and this 
circumstance should lead to us to continue looking for more adequate 
measurements (at some point combining the use of more than one index) 
which are able to capture accuracy in the best possible way in terms of 
estimating the prediction error returned by the single classifiers also in order 



to improve the comparison with the use of a more complex scheme like 
Stacking. 
 
 
5. CONCLUSIONS AND FUTURE DEVELOPMENTS 
 

In this work we were interested to investigate the predictive accuracy of one 
of the most popular learning schemes for the combination of supervised 
classification methods: the Stacking Technique proposed by Wolpert (1992), 
in particular, we made reference to the StackingC ensemble scheme as a 
starting point for our analysis, to which some modifications and extensions 
were made.  

We also focus on an aspect that has been covered much less by the 
studies and that in our view, however deserves special attention: the choice 
of the initial dataset. This is connected to the assumption that small changes 
in the dataset can lead to different models and that the presence of outliers 
might alter the parameters of the model.  

 
We were interested in investigating this aspect and in extending certain 

distinct elements in the Stacking scheme, as well as examining some 
characteristics neglected by the literature and also in proposing some 
distinct elements of the Stacking scheme. Starting from the recent advances 
proposed by the literature for the Stacking framework, the whole Stacking 
scheme was therefore implemented in Matlab and built in the form of an 
interlinked process which is begun by the generation of the level-0 data in 
the case of the simulation study, and which includes a complete 
homogenisation of the procedures relative to each of its phases in order to 
guarantee uniformity and therefore comparability of the outputs returned at 
every step. At the moment, of course the scheme is in an experimental 
phase and will definitely have to be improved both in terms of the choice of 
classifiers to be inserted in the set and of the setting of its parameters in 
order to optimise performances.  

Since we are interested in investigating empirically the performances of 
the single classifiers and of Stacking for datasets with different 
characteristics and above all if it is convenient to use Stacking in terms of 
improving performances instead of a single classifier, bearing in mind the 
necessary increase in computation, some applications of the proposed 
scheme were carried out both on simulated and real data.   

An analysis of the results obtained by applying the proposed Stacking 
scheme to the set of the datasets generated by means of the experimental 
design does not lead us to believe that the prediction error of the Stacking 
scheme is to be considered lower than any other classifier or that, therefore, 
the Stacking scheme is preferable in terms of performances to the use of 
the best single classifier. 

It always achieves good performances and is to be considered among the 
best, but it does not seem to be preferable for this type of application, such 



as Linear Discriminant Analysis and Logistic Regression, while the 
behaviour of scaled SVM is particularly interesting, as it is has the lowest 
error among the classifiers, also in comparison with Stacking, LDA and 
Logistic Regression. 
 
In a set of classifiers in which there was no SVM it would be the best for 
each of the analysed datasets. In the case of contaminated data Stacking 
improves its performances noticeably compared to what we have observed 
for non-contaminated data, in some cases also in comparison with scaled 
SVM, and generally appears to be very competitive, above all when the 
contaminations are more substantial and especially in the presence of 
strong contaminations also for both classes.  
On the contrary, the effect of the contamination is quite substantial for 
Linear Discriminant Analysis and Logistic Regression. Generally speaking, 
based on the outcome of the experiments carried out, it seems to be that 
the contamination contained by a single class causes a deterioration in the 
performances of LDA and Logistic Regression, while with a higher level of 
contamination this only happens with a high degree of separation between 
the groups. Where there is a low degree of separation, or both classes are 
contaminated, the worst performance will be achieved for all four of the 
parametric classifiers. 

A further element of interest in our research was whether the number and 
typologies of the algorithms chosen were important for the composition of 
the set of base classifiers, since the literature is quite unequivocal in 
maintaining that any classifier can be used in a Stacking scheme. Different 
Stacking schemes have been created for different input datasets. The main 
results obtained from the application of the different  Stacking schemes 
show that the choice from the start of high performance base-level 
classifiers could increase the predictive capacities of Stacking, and 
however, a comparison shows that the Stacking scheme with three base 
classifiers, is more successful (although the differences are slight). There 
would seem to be a confirmation of the circumstance that a greater 
complexity of the meta model does not improve results also for the 
applications to real data : in fact the best Stacking performances were 
achieved (at least in the examples analysed) with schemes with a lower 
number of base classifiers STA3 and STA6. 
 

As far as the application to real data is concerned, the analysis was 
carried out on different datasets, and the results of one of them are 
illustrated (Appendix to Chapter 4). It is a very complex dataset containing 
the results of the inspection surveys carried out by INPS (National Social 
Security Institute) on Italian companies in order to see if there was any off-
the-book employment present, in and it achieves error values that are 
generally quite high for all classifiers, as was predictable given the level of 
overlap between the groups. It is easy to guess from the structure of the 



data that there are anomalous observations which are in the group 
represented by the companies that declare an absence of any off-the-book 
employment. Any anomalous values could give rise to signals of the 
potential presence of off-the-book employment in those companies. In both 
cases, however, Stacking seems competitive when compared to the use of 
ensemble methods (Bagging and Adaboost), but not preferable in terms of 
performances to the use of the best single classifier apart the STA 6 
scheme. 

 
With a view to a further improvement of the entire proposed process, 

which is at the experimental stage, the research activity will be directed 
towards optimising performances and guaranteeing the reliability of the 
predictions for single classifiers by modifying the setting of the parameters 
used in this phase, and more generally by including: 
 

 Extension of the experimental design both to verify further the 
results achieved and to insert other elements into the design 
(different processes of data generation, increasing the number 
of classes, different prior values). 

 Introduction of more adequate measurements (at some point 
combining the use of more than one index) which are able to 
capture accuracy in the best possible way in terms of estimating 
the prediction error returned by the classifiers. 

 Possible introduction of a weighting system into the method of 
meta-classification should we intend to combine several 
classifiers with very different performances in terms of accuracy. 

 Extension of the methods proposed by the literature (Varma et 
al., 2006; Tibshirani et al., 2008) for the estimation and reduction 
of potential bias in cross validation error for the problem that is 
the object of the work. 
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This Appendix gives the traditional formalization of the four parametric 
algorithms used to induce the respective base classifiers. We recall, 
therefore, some notations and concepts commonly used for dealing with 
classification problems 
 

 Linear Discriminant Analysis 

In a k class classification problem we need to know the class posterior 

probabilities  Pr |  G X for optimal classification, where X is a casual p-

dimensional variable, and G  is a casual categorical variable that represents 

the to which an individual belongs.  

The overall population is made up of K classes and we suppose  kf x is 

the class-conditional density of X  in class G k , and let k  be the prior 

probability of class k , with    
1

 1
k

k
k



 .  

Therefore, the density for the overall probability is: 

   
1

K

k k kk
f x f x 


 .  

 
By application of the Bayes theorem: 
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                             (1.1) 

We will have to know or evaluate from the data k and  kf x . In a 

parametric context we can suppose the hypothesis that we model each 

class density as multivariate Gaussian ( , )p k kN   , so that the result is:                                                                     
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            for 1,...,k K       (1.2)      

 
 

Linear discriminant analysis (LDA) arises in the special case when we 

assume that the classes have a common covariance matrix k k  . 

The linear discriminant functions (LDA) 

                    
11 1 log
2

T Tx x
k k k k
                                (1.3) 

are an equivalent description of the decision  rule, 

with ( ) argmax ( ).k kG x x  Generally, we do not know the parameters of 

the Gaussian distributions. We will need to estimate them from the data as 
follows: 
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For a two-class problem there is a correspondence between Linear 
Discriminant Analysis and classification by linear least squares. The 
decision rule is assigned to class 2 if 

     
1 1 1

2 1 2 2 1 1 1 2

1 1
log / log /
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and class 1 otherwise. Suppose we code the targets in the two classes as 
+1 an -1 respectively.  
With more than two classes, LDA is not the same as linear regression of the 
class indicator matrix, and it avoids the masking problems associated with 
that approach (Hastie et al., 1994). 
 

 Quadratic Discriminant Analysis 

If, on the other hand, the k  are not assumed to be equal, from the 

expression of density (1.2)  we then get quadratic discriminant functions 
(QDA), 

       1
( )

1 1
( ) log log

2 2

T
k kkk k kx x x   

                          (1.4) 

The estimates for k for QDA are similar to those for LDA, while separate 

covariance matrices must be estimated for each class: 

                             / 1
i

T

k k kg k i i kx x n                        (1.5) 

Unlike the Linear Discriminant Analysis, QDA is closely linked to the 
Gaussian distributive hypothesis. 
 

 Naïve Bayes  

Naïve Bayes models are a variant of the previous case, and assume that 
each of the class densities are products of marginal densities; that is, they 

assume that given a class G j , the features kX are independent:  

                                    
1

p

j jk k

k

f X f X


                                   (1.6) 



This assumption is often not true, but it simplifies the estimation.  

The individual class-conditional marginal densities jkf  can each be 

estimated separately using one-dimensional kernel density estimates.  
This is in fact a generalization of the original Naïve Bayes 

procedures,which used univariate Gaussians to represent these marginals. 
Naïve Bayes uses a Laplacian estimate for estimating the conditional 

probabilities for each nominal attribute to compute jkf  . 

 For each continuous-valued attribute, a normal distribution is assumed in 
which case the conditional probabilities can be conveniently represented 
entirely in terms of the mean and variance of the observed values for each 
class. 
 

 Logistic Regression 

The specific form of the Logistic Regression model for the posterior 

probabilities  kP x  via linear functions in x, while at the same time ensuring 

that they sum to one and remain in [0, 1] if there are two  classes is: 
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The logit transformation in terms of  kP x is defined :  
 

log
1

p
g x

p
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and the model has the form: 

                                
0

( 1 | )
log

( 2 | )

T
x

P G X x

P G X x
 

 


 
                            (1.7) 

 

 

The importance of this transformation is that  g x has many of the 

properties of a linear regression model. The logit  g x is linear in its 

parameters, may be continuous, and may range  to , depending on 
the range of x. 
 
 



 Bagging  (Bootstrap aggregation) 

Given a learning set   , , 1,...,n nL y x n N  , where the y are class 

labels, we assume to build a model on it obtaining the prediction  f x at 

input x.   
Bootstrap aggregation (or Bagging) averages this prediction over a 

collection of bootstrap samples   B
L from L.  

For each bootstrap sample
 B

L  we fit our model, that returns 

prediction
 

 
B

f x . The bagging estimate is defined by: 

 

                                     
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1
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f x f x
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If y is a class label, let the 
 

 
B

f x  vote to form  bag
f x . 

The 
  B

L form replicate data sets, each consisting of N cases, drawn at 

random, but with replacement, from L. Each  ,n ny x may appear repeated 

times or not at all in any particular 
 B

L . 

The 
  B

L are replicate data sets drawn from the bootstrap distribution 

approximating the distribution underlying L. 
 
A critical factor in whether bagging will improve accuracy is the stability of 

the procedure for constructing f .  If changes in L, i.e. a replicate L, 

produces small changes in f , then bag
f B will be close to f . Improvement 

will occur for unstable procedures where a small change in L can result in 

large changes in f . (Breiman 1996). 

 

 AdaBoost 
 
Boosting is a general method for improving the performance of any learning 

algorithm. Schapire introduced the first boosting algorithm in 1990. In 1995, 

Freund and Schapire introduced the AdaBoost algorithm. In this thesis, we 

refer to AdaBoostM1 (Freund and Schapire,1996).  



The algorithm assumes a training set consisting of m instances 

    1 1
, , ..., ,

m m
S x y x y where 

i
x is a vector of attribute values and 

i
y Y is 

the class label associated with
i

x . The boosting algorithm call another 

unspecified learning algorithm (called WeakLearn) repeatedly in a series of 

rounds. The purpose of the boosting is to apply the weak learner to 

repeatedly modified version of the data, producing a sequence of weak 

classifiers
t

h and the predictions from all of them combined through a 

weighted majority vote to give the final prediction that minimizes the error. 

On round t, therefore, the booster provides WeakLearn with a distribution 

t
D over the training set S and in response it computes a classifier which 

should correctly classify a fraction of the training set that has large 

probability with respect to . The process is carried out for 1, 2,...,t T and in 

T the booster combines all weak classifiers into a final classifier 
fin

h . 

 
Algorithm AdaBoost.M1 

Input:     1 1
, , ..., ,

m m
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          WeakLearn 
          T (number of iterations) 
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t
Z is normalization constant in order to be 

1t
D


a distribution 

Output the final classifier 
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1. APPLICATION TO REAL DATA.  
 

This part of the work is dedicated to the application of the proposed Stacking 
scheme to real data. The main results of the application of the Stacking 
Scheme to the dataset will be reported below.  

First of all, in connection with what we covered in the previous section, 
that is to say the use of different  Stacking schemes, we subjected the 
dataset to the three different Stacking schemes. 
In the first scheme we always used a fixed set with 13 base classifiers 
STA13, which represents the scheme of reference that we applied for the 
simulation study. 
On the basis of the experiments performed and the above study carried out 
for the thesis on the performance of different sets of classifiers, we also 
decided to use the set with 6 base classifiers STA6 and the one with three 
classifiers, STA3, with the same composition features reported in the 

previous section.  
We decided to do without STA4, which does not seem to give results that 
are worse overall compared to the others. 

We always used linear least squares regression as meta-classifiers and 
always ridge regression with the mechanism of mutual exclusivity that has 
already been described. 
 
 

1.2 The dataset Off-the-book employment 
 

The application of the proposed Stacking Scheme to real data was carried 
out on a data sample taken from a dataset containing the results of the 
inspection surveys carried out by INPS (National Social Security Institute) 
on Italian companies in order to see if there was any off-the-book 
employment present. In its original version this dataset is extensive and 
rather complex, consisting of 14,651 records divided into two non-balanced 
groups, and 39 variables that are both continuous and qualitative.  
 
The data used in the analysis are taken from 230 records extracted from the 
original dataset,  respecting, where possible, the proportions of the data 
originally present in each group, and we have selected 4 variables.  
 
Furthermore, because of the marked level of overlap between the two 
groups and the presence of collinearity between variables, these variables 
have been transformed by taking logs. 

1n =126 

2n =104 

 
Identification of the variables used: 
Org4 = No. paid days of unskilled workers per unit of total paid day  



Dim8 = Total paid days  
Pers13 = employee expenses per employee (Asia)  
Pers16 = Productivity per employee  
Label class = Absence/Presence of the off-the-book workforce during the  
last INPS inspection  
 
Three different Stacking schemes were used for this case too:  
 
Scheme 1) 3 base classifiers with 4 explanatory variables + LR/RR as mutually     

exclusive meta-classifiers 
Scheme 2) 6 base classifiers with 4 explanatory variables + LR/RR  as mutually  

exclusive meta-classifiers 
Scheme 3) 3 base classifiers with 4 explanatory variables + LR/RR as mutually 

exclusive meta-classifiers  
 

Since the dataset does not come from our simulation plan but refers instead 
to real data, and since there has also been a transformation of the original 
variables, it is interesting to observe Figure 1 which shows the scatter plot 
matrix. 
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FIGURE 1. -  Off-the-book employment Data. Scatterplot matrix with bivariate 
scatters of the three variables and histograms on the main diagonal. Units in 
Group 1 are represented by blue crosses 
 

Both the conditions of extensive collinearity between the variables and of 
the degree of overlap between the groups seem to have improved 
compared to the original situation, although the overlap remains. There do 
not seem to be any variables that make a perfect separation possible 
between the two groups. 



We now move on to the analysis of the main results for each proposed 
Stacking Scheme: 
 
1) Scheme STA13 

In the scheme made up of 13 base classifiers, as shown in Table 1 below, 
the average cross validation error stays quite high for all the classifiers, as 
was predictable given the level of overlap between the groups. 
Having chosen to carry out the evaluation and comparison of the classifiers 
by estimating cross validation (medium in this case), but also with the aim of 
broadening the representation of the error distribution, we included the 
calculation of other indicators which could improve our knowledge and the 
plots shown above. 
 
TABLE 1. - Off-the-book employment Data. Measurements of the 
performances of the base classifiers and the Stacking scheme STA13 
calculated with reference to the respective distribution of the cross validation 
errors. Average values for 100 iterations. 
 Cross 

Validation 
Error 

 

 

Median 

Cross 
Validation 

Error 

Std. 

Deviation 
Cross 

Validation 

Error 

Interquartile 

Difference 
Cross 

Validation 

Error 

Range 

Cross 
Validation 

Error 

MAD 

Cross 
Validation 

Error 

%       

 Best 
positioning 

Classifier        

LDA 0,4347 0,4348 0,0086 0,0087 0,0348 0,0043 2 

QDA 0,4653 0,4652 0,0125 0,0174 0,0652 0,0087 0 

TRE 0,4701 0,4696 0,0288 0,0413 0,1609 0,0217 0 

TRE1 0,4642 0,4696 0,0307 0,0457 0,1435 0,0261 5 

BAG 0,4772 0,4783 0,0224 0,0261 0,1087 0,0130 0 

ADA 0,4360 0,4348 0,0192 0,0261 0,0913 0,0130 14 

ADAm 0,4395 0,4348 0,0220 0,0348 0,1087 0,0152 16 

NBA 0,4351 0,4348 0,0093 0,0087 0,0522 0,0043 2 

SVM 0,4240 0,4217 0,0110 0,0130 0,0609 0,0087 17 

SVMscaled 0,4236 0,4217 0,0129 0,0130 0,0565 0,0087 21 

SVMb 0,4240 0,4217 0,0110 0,0130 0,0609 0,0087 0 

SVMbscaled 0,4299 0,4304 0,0132 0,0217 0,0609 0,0087 9 

GLM 0,4318 0,4304 0,0081 0,0130 0,0391 0,0043 0 

STA 0,4417 0,4435 0,0286 0,0391 0,1391 0,0217 14 

 
When comparing the performance achieved by Stacking with those of some 
base classifiers (Linear Discriminant Analysis, Adaboost, Support Vector 
Machine, and Logistic Regression) it does not seem to be competitive 



compared to the use of a single classifier. However, it should be noted that, 
although Stacking has quite a modest result in terms of accuracy, it 
manages to achieve quite an interesting result in terms of best positioning (it 
was the best in 14% of the iterations) which is higher than classifiers 
characterised by lower average values for cross validation error. With 
regard to this, Figure 2 and Figure 3 show the presence of a certain 
variability in the error distribution for some classifiers on the total of the 
iterations. 

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

1 2 3 4 5 6 7 8 9 10 11 12 13 14
classifiers

L
D

A

Q
D

A

T
R

E

T
R

E
1

B
A

G

A
D

A

A
D

A
m

N
B

A

S
V

M

S
V

M
s
c
a
le

d

S
V

M
b

S
V

M
b
s
c
a
le

d

G
L
M

S
T

A

C
ro

s
s
 v

a
lid

a
ti
o
n
 e

rr
o
r

Box plot

 
FIGURE 2. -  Off-the-book employment Data. Boxplots of error distribution of 
13 base classifiers and Stacking scheme. Over 100 iterations. 
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FIGURE 3. - Off-the-book employment Data. Comparison of cross-validation 
error of 13 base classifiers and Stacking scheme. Over 100 iterations. 



In this sense, examples are represented by Stacking and by the 
Classifcation Tree, which achieve respectively the minimum and maximum 
values (compared to the other classifiers) of cross validation error in some 
iterations. 

 
 

2) Scheme STA6 
 

In the scheme with 6 base classifiers, the average cross validation error for 
Stacking is lower than any other single classifier and its performance is the 
best in terms of the number of times when it was the best classifier for the 
total of iterations carried out, as we can see in Table 2 below.  

 
TABLE 2. - Off-the-book employment Data. Measurements of the 
performances of  six base classifiers and the Stacking scheme STA6, 
calculated with reference to the respective distribution of the cross validation 
errors. Average values for 100 iterations. 
 

 Cross 

Validation 
Error 

Median 

Cross 
Validation 

Error 

Std. 

Deviation 
Cross 

Validation 

Error 

Interquartile 

Difference 
Cross 

Validation 

Error 

Range 

Cross 
Validation 

Error 

MAD 

Cross 
Validation 

Error 

%       

Best 
positioning 

Classifier        

LDA 0,4342 0,4348 0,0091 0,0130 0,0565 0,0043 16 

QDA 0,4609 0,4609 0,0153 0,0174 0,1043 0,0087 2 

BAG 0,4704 0,4696 0,0221 0,0261 0,1435 0,0130 2 

ADA 0,4361 0,4348 0,0184 0,0217 0,1217 0,0130 22 

NBA 0,4336 0,4348 0,0094 0,0130 0,0696 0,0043 15 

GLM 0,4331 0,4348 0,0095 0,0130 0,0565 0,0087 8 

STA 0,4309 0,4304 0,0243 0,0304 0,1478 0,0174 35 

 
It would seem, therefore, that this combination of classifiers is the one that 

best expresses the predictive capacities of Stacking in terms of accuracy. In 
this case too, as shown in Figure 4, Stacking is characterised by a certain 
variability compared to the others, even though the average and median 
values for cross validation error are the lowest. 

The fluctuations in cross validation error compared to some classifiers for 
the total number of iterations, especially for Stacking and Bagging, are 
shown in Figure 5. 



0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

1 2 3 4 5 6 7
classifiers

L
D

A

Q
D

A

B
A

G

A
D

A

N
B

A

G
L
M

S
T

A

C
ro

s
s
 v

a
li
d
a
ti
o
n
 e

rr
o
r

 
FIGURE 4. – Off-the-book employment Data. Boxplots of error distribution of  
six base classifiers and STA6 scheme. Over 100 iterations. 
 
This variability is, of course, characterised by the fact of achieving minimum 
values for the former and maximum values for the latter, compared with the 
other classifiers which, on the contrary, appear to have quite moderate 
fluctuations. 
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FIGURE 5. - Off-the-book employment Data. Comparison of cross-validation 
error of six base classifiers and STA6 scheme. Over 100 iterations. 
 
 
 



3) STA3 
 

In the scheme with three base classifiers, Stacking seems competitive when 
compared to the use of ensemble methods (Bagging and Adaboost), but not 
preferable to the use of the Support Vector Machine which has a lower error 
rate in the classification.  
 
TABLE 3. - Off-the-book employment Data. Measurements of the 
performances of  three base classifiers and the Stacking scheme STA3, 
calculated with reference to the respective distribution of the cross validation 
errors. Average values for 100 iterations. 
 

  

Cross 

Validation 
Error 

Median 

Cross 
Validation 

Error 

Std. 

Deviation 
Cross 

Validation 

Error 

Interquartile 

Difference  
Cross 

Validation 

Error 

Range 

Cross 
Validation 

Error 

MAD   

Cross 
Validation 

Error 

%            

Best 
positioning 

Classifier               

BAG 0,4667 0,4652 0,0252 0,0304 0,1304 0,0174 1 

ADA 0,4352 0,4348 0,0207 0,0261 0,0957 0,013 28 

SVMb 0,4243 0,4261 0,0138 0,0174 0,0783 0,0087 51 

STA 0,4311 0,4304 0,0178 0,0174 0,1000 0,0087 20 
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FIGURE 6. - Off-the-book employment Data. Boxplots of error distribution of  
three base classifiers and STA3 scheme. Over 100 iterations. 
 



The variability of Stacking is more moderate compared to what we have 
seen in previous schemes and compared to ensemble methods, as illustrated in 
Figure 6  and Figure 7. 
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FIGURE 7. - Off-the-book employment Data. Comparison of cross-validation 
error of  three base classifiers and STA3 scheme. Over 100 iterations. 
 
If we summarise some of the main results obtained in terms of the Stacking 
scheme’s performance, using subsets of base classifiers of different sizes 
and typologies, for real datasets and simulated data, we can then analyse 
the following Table 4.  
 
TABLE 4.- Off-the-book employment Data. Cross validation average error 
rate for different Stacking schemes and different base-level datasets.  

 STA3 STA6 STA13 

Input Data  0-level       

120_3_05 0,3547 0,3472 0,3545 

120_10_05 0,2323 0,2399 0,2467 

120_3_3 0,0048 0,0066 0,0073 

120_10_3 0 0 0,0001 

200_3_05 0,3498 0,3450 0,3475 

200_10_05 0,2268 0,2324 0,2314 

200_3_2 0,0434 0,0462 0,0465 

200_10_2 0,0004 0,0016 0,0016 

200_3_3 0,0058 0,0016 0,0070 

200_10_3 0 0 0 

Off-the-book 0,4311 0,4309 0,4417 



There would seem to be a confirmation of the circumstance that a greater 
complexity of the meta model does not improve results: in fact the best 
Stacking performances were achieved (at least in the examples analysed) 
with schemes with a lower number of base classifiers STA3 and STA6. We 
did not take the STA4 scheme into consideration, because with respect to a 
low second level complexity, it recorded very bad performances  due to the 
weight of the “weak” component among its classifiers. 
STA13 achieves the same level of performances as the other two schemes 
only with the hypothesis that both the degree of complexity and the degree 
of separation between the groups are at a maximum in the base-level input 
datasets.  
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